Протективные эффекты катионов цинка в отношении бактерий Staphylococcus aureus, подвергающихся воздействию антибиотиков

Обложка


Цитировать

Полный текст

Аннотация

Цель работы – оценка чувствительности бактерий Staphylococcus aureus к стандартному набору антибиотиков при нанесении на диск с антибиотиком катионов цинка или в условиях предобработки катионами цинка газона бактерий.

Материалы и методы. Суспензию бактерий S. aureus, содержавшую 108 КОЕ/мл, засевали газоном на чашки Петри с питательным агаром. Спустя 30 мин на поверхность газона по стандартному шаблону помещали диски с антибиотиками. Катионы цинка применяли в виде водного сульфата ZnSO4× 7H2O в 0,15 М растворе NaCl. Раствор в объёме 5 мкл наносили на диски с антибиотиками непосредственно после их размещения на поверхности газона или предварительно на поверхность газона с 10-минутной экспозицией на местах последующей установки дисков с антибиотиками. Затем чашки с культурой бактерий инкубировали в течение суток при 37 °С, после чего определяли диаметр зоны задержки роста бактерий.

Результаты и обсуждение. В присутствии на диске с антибиотиком 1,0 мкг/мл катионов цинка снижение чувствительности S. aureus к действию антибиотиков отмечено в 2,9% наблюдений. В присутствии одного, четырёх или восьми катионов цинка на молекулу антибиотика на диске протекция бактерий зарегистрирована в 1,4–5,7% случаев. После предобработки газона катионами цинка защита бактерий от последующего воздействия антибиотиков определена в 27,3–45,5% наблюдений.

Заключение. В условиях предобработки газона катионы цинка оказывают выраженное протективное действие на бактерии S. aureus, подвергающиеся последующему воздействию антибиотиков.

Полный текст

Введение

Антибактериальные свойства катионов цинка, специфически проявляющиеся, в частности, на клинических изолятах Streptococcus pyogenes [1], Staphylococcus aureus и Pseudomonas aeruginosa [2], на шига-токсигенных Escherichia coli, Klebsiella pneumoniae [3], а также способность металла блокировать развитие SOS-реакций, ведущих посредством индукции гипермутагенеза к формированию устойчивости бактерий к действию антибиотиков [3], определяют методологию комбинирования цинка с антибактериальными препаратами. По мнению исследователей, это должно повышать эффективность последних в терапии хронических инфекций, поскольку применение классических антибиотиков не позволяет достичь полной элиминации возбудителя и купирования инфекционного процесса [4-6].

Действительно, комплексы цинка с соединениями группы фторхинолонов левофлоксацином и ципрофлоксацином за счёт изменения проницаемости клеточной мембраны обладают более высокой антимикробной активностью в отношении бактерий S. aureus, E. coli, K. pneumoniae и Bacillus dysenteriae, чем исходные антибиотики [4, 5]. Связавший цинк и полимеризованный им ванкомицин реализует повышенную активность против резистентных к самому ванкомицину бактерий [6]. В составе эритромицин-цинкового комплекса цинк предотвращает развитие бактериальной резистентности к эритромицину.

В то же время образование антибиотиками комплексов с цинком может приводить не только к повышению, но и к снижению их антимикробного потенциала, что позволяет трактовать взаимодействие металлов с антибиотиками в качестве фактора, в определённой мере препятствующего достижению эффекта антимикробной химиотерапии.

Целью работы стала оценка чувствительности бактерий S. aureus к действию стандартного набора антибиотиков при нанесении на диск с антибиотиком катионов цинка или в условиях предобработки катионами цинка газона бактерий.

Материалы и методы

Первичные культуры бактерий S. aureus получены принятым методом посева патологического биоматериала человека на элективные и селективные питательные среды. В работе использовали 10 клинических изолятов S. aureus, предварительно охарактеризованных по чувствительности к антибактериальным препаратам с использованием диско-диффузионного метода и стандартных условий.

Для постановки реакций стандартизованную суспензию бактерий, полученную из суточных культур S. aureus и содержавшую 108 КОЕ/мл, засевали газоном из объёма 1,0 мл суспензии в физиологическом растворе на стандартные стерильные чашки Петри диаметром 90 мм с питательным агаром Мюллера-Хинтона (ООО «НИЦФ», Санкт-Петербург). Спустя 30 мин на поверхность газона по стандартному шаблону помещали бумажные диски, пропитанные антибиотиками. Использовали расширенный набор из 14 дисков для определения чувствительности стафилококков к противомикробным лекарственным средствам (№011214, ООО «НИЦФ», Санкт-Петербург).

Катионы цинка применяли в виде водного сульфата ZnSO4 х 7H2O в 0,15 М растворе NaCl (pH 7,16-7,62). Раствор в объёме 5 мкл наносили на диски с антибиотиками непосредственно после их размещения на поверхности газона, добиваясь полного смачивания диска. Искомая концентрация катионов цинка на диске составляла 1,0 мкг/мл или соответствовала одному, четырём или восьми катионам на молекулу антибиотика. В отдельных экспериментах содержавший катионы цинка в искомых концентрациях 0,15 М раствор NaCl (pH 7,6-7,8) в объёме 5 мкл наносили непосредственно на поверхность газона по стандартному шаблону и выдерживали 10 мин экспозиции при комнатной температуре, после чего на местах нанесения катионов цинка размещали диски с антибиотиками.

Чашки Петри, содержавшие размещённые на газоне культуры бактерий S. aureus диски с антибиотиками и катионы цинка, инкубировали в течение 24 ч при 37 °С. По истечении срока инкубации результат учитывали, определяя диаметр зоны задержки роста культуры с использованием угловой линейки Partigen (Behringwerke AG, Германия).

Для каждого клинического изолята бактерий использовали не менее двух параллельных постановок.

На препаративном этапе исследования маточный раствор сульфата цинка в 0,15 М NaCl стерилизовали методом мембранной фильтрации с использованием насадок для водно-солевых растворов Millex с диаметром пор 0,22 мкм (Millipore, США), после чего готовили образцы с искомой концентрацией катионов металла в 0,15 М растворе NaCl.

В ходе экспериментов кислотность 0,15 М раствора NaCl контролировали с помощью базового электронного рН-метра Sartorius PB-11, укомплектованного электродом Sartorius PY-P11.

При математической обработке результатов исследования достоверность различия средних величин устанавливали с помощью ί-критерия Стьюдента.

Результаты

В присутствии на диске с антибиотиком катионов цинка в физиологической концентрации 1,0 мкг/мл зона задержки роста S. aureus увеличилась в диаметре на 3,0 мм и более в 8 (5,7%) из 140 наблюдений и уменьшилась на 3,0 мм и более в 4 (2,9%). Тенденция к повышению чувствительности S. aureus проявилась на газоне бактерий, подверженных воздействию клиндамицина, линезолида и левомицетина (по 2 наблюдения); тенденция к снижению чувствительности обнаружилась при обработке газона (другие изоляты) левомицетином (2 наблюдения).

Из наиболее показательных по средним значениям эффектов катионов цинка следует отметить увеличение диаметра зоны задержки роста S. aureus в присутствии клиндамицина на 4,1% (р > 0,1), в присутствии ванкомицина на 4,0% (р < 0,1).

В присутствии на диске эквимолярных по отношению к антибиотику количеств катионов цинка зона задержки роста S. aureus увеличилась в диаметре в 10 (7,1%) из 140 наблюдений и уменьшилась в 2 (1,4%). Тенденция к повышению чувствительности S. aureus проявилась на газоне бактерий, подверженных воздействию линезолида и котримоксазола (по 2 наблюдения), левомицетина (4 случая).

Наиболее показательно увеличение диаметра зоны задержки роста S. aureus в присутствии рифампицина на 3,15% (р > 0,1), в присутствии левомицетина на 11,5% (р < 0,1) и уменьшение в присутствии ванкомицина на 3,4% (р > 0,1).

В присутствии на диске четырёх катионов цинка на молекулу антибиотика зона задержки роста S. aureus увеличилась в 1 (0,7%) из 140 наблюдений и уменьшилась в 3 (2,1%). В присутствии линезолида диаметр зоны задержки роста S. aureus увеличился на 4,5% (р > 0,1), доксициклина на 2,7%, левомицетина на 2,2%, а в присутствии фузидина натрия уменьшился на 2,9%.

В присутствии на диске восьми катионов цинка на молекулу антибиотика зона задержки роста S. aureus увеличилась в 3 (2,1%) из 140 наблюдений и уменьшилась в 8 (5,7%). Тенденция к повышению чувствительности S. aureus проявилась на газоне бактерий, подверженных воздействию доксициклина, 2 наблюдения. Тенденция к снижению чувствительности обнаружилась при обработке газона бензилпенициллином, оксациллином и гентамицином по 2 наблюдения.

Диаметр зоны задержки роста S. aureus в присутствии доксициклина увеличился на 5,4%, в присутствии левомицетина на 4,4% (р > 0, 1), тогда как в присутствии бензилпенициллина уменьшился на 4,0%, оксациллина на 5,6%, эритромицина на 3,3% (р > 0,1), ципрофлоксацина на 3,3%, левофлоксацина на 4,2%, фузидина натрия на 3,5% (р > 0,1).

Предобработка газона бактерий в области последующей установки диска с антибиотиком катионами цинка (8 катионов на молекулу антибиотика) способствовала увеличению диаметра зоны задержки роста S. aureus на 1,0 мм и более в 4 (12,1%) из 33 проведённых наблюдений и уменьшению на 1,0 мм и более в 9 (27,3%). Тенденция к повышению чувствительности S. aureus проявилась на газоне бактерий, подверженных воздействию оксациллина, 3 случая. Тенденция к снижению чувствительности обнаружилась при обработке газона ципрофлоксацином, левофлоксацином и фузидином натрия по 2 наблюдения.

Как показывают данные табл. 1, по сравнению с действием катионов цинка, нанесённых на диск с антибиотиком, предобработка газона катионами цинка оказывает на 7,2% (р < 0,05) более выраженное протективное действие на бактерии S. aureus, которые становятся при этом на 10,5% (р < 0,01) более устойчивыми к действию применённого спектра антибиотиков по сравнению с контролем без металла.

 

Таблица 1

Зоны задержки роста S. aureus в условиях локальной 10-минутной предобработки газона бактерий катионами цинка (М ± m, n = 9). Восемь катионов цинка на молекулу антибиотика

Группы наблюдения

Зона задержки роста, мм

Протективный эффект, %

Контроль 

25,7 ± 0,33

-

Цинк на диске 

24,8 ± 0,40

3,5

Цинк предобработка 

23,0 ± 0,44*

7,2

Цинк предобработка по сравнению с контролем

23,0 ± 0,44**

10,5

П р и м е ч а н и е. * р<0,05 по сравнению с цинком на диске; ** р<0,01 по сравнению с контролем.

 

Предобработка газона бактерий катионами цинка, применёнными в эквимолярном отношении к антибиотику, способствует увеличению диаметра зоны задержки роста S. aureus в 1 (3,0%) из 33 наблюдений и уменьшению в 15 (45,5%). Тенденция к снижению чувствительности обнаружилась при обработке газона оксациллином, левофлоксацином и фузидином натрия по 3 наблюдения.

Как показывают данные табл. 2, по сравнению с действием катионов цинка, нанесённых на диск с антибиотиком, предобработка газона катионами цинка оказывает на 10,4% (р < 0,05) более выраженное протективное действие на бактерии S. aureus, которые становятся при этом на 9,3% (р > 0,1) более устойчивыми к действию применённого спектра антибиотиков, чем в контроле без металла.

 

Таблица 2

Зоны задержки роста S. aureus в условиях локальной 10-минутной предобработки газона бактерий катионами цинка (М ± m, n = 13). Один катион цинка на молекулу антибиотика

Группы наблюдения

Зона задержки роста, мм

Протективный эффект, %

Контроль

23,7 ± 0,70

-

Цинк на диске

24,0 ± 0,51

-

Цинк предобработка

21,5 ± 0,63*

10,4

Цинк предобработка по сравнению с контролем

21,5 ± 0,63

9,3

П р и м е ч а н и е. * р<0,05 по сравнению с цинком на диске.

Обсуждение

Эволюционная динамика бактериальных популяций в контексте их адаптации к условиям окружающей среды и персистенции в организме хозяина формирует ряд механизмов, позволяющих бактериям поддерживать режимы продуктивного развития, даже подвергаясь воздействию неблагоприятных факторов макрои микроокружения. К числу таких механизмов правомерно относить на первый взгляд не связанные между собой тонкие настройки гомеостаза тяжёлых металлов, в первую очередь цинка, содержание которого в клетках разных видов бактерий поддерживается на достаточно близком уровне при относительно невысоком диапазоне вариабельности [7, 8], способность к образованию биоплёнок, существенно повышающих устойчивость микробов к действию токсичных соединений и антибиотиков [9, 10], генерацию популяций персистеров, обеспечивающих бактериям переживание неблагоприятных условий окружения и восстановление в последующем процессов персистенции [11, 12].

Поскольку металлы не синтезируются и не подлежат деградации в биологических системах, поддержание их гомеостаза определяется регуляцией транспортных и обменных процессов между клеткой и окружающей её средой [7]. На ограничение доступности металлов бактериальная клетка отвечает дерепрессией высокоаффинных систем импорта, заменой металлозависимых белков и ферментов на металлонезависимые, мобилизацией металла из внутриклеточных депо, перепрограммированием протеома на трансляционную репрессию синтеза менее важных для её жизнеобеспечения ферментов [7].

Первостепенная роль цинка в процессах деления бактериальной клетки и поддержания её жизнедеятельности в ходе инфекционного процесса обусловливает экспрессию бактериями Streptococcus pneumoniae специфических импортёров цинка AdcA и AdcAII, продукцию S. aureus металлофора стафилонина и высокоаффинных специфических транспортёров, наличие в протеоме Bacillus subtilis белков, связывающих цинк с константами порядка 10-15 М, которые определяют содержание у бактерий, соответствующих по размерам B. subtilis, не более 106 атомов цинка на клетку и отсутствие в физиологических условиях полностью гидратированного (свободного) цинка в цитозоле [8].

Активное потребление бактериями катионов цинка, даже в условиях применения относительно низких сублетальных концентраций металла, вызывает форсирование мутагенеза и обогащение de novo мутантов, селекционируемых под давлением механизмов отбора на проявление множественной устойчивости к антибиотикам. Одновременно физиологические концентрации цинка (но не кальция или магния) способствуют формированию биоплёнок S. aureus, образующихся с участием фибронектин-связывающих белков [13] и переводящих бактерии в семидормантное состояние. Микробы оказываются недоступными для распознавания и не подлежат элиминации нейтрофилами и макрофагами организма хозяина, обретая при этом устойчивость к антибиотикам [13].

Биоплёнки S. aureus, формирующиеся у бактерий в условиях повышенной агрегации из подобных биоплёнкам кластеров, которые образуются вследствие снижения активности регуляторной системы Agr, ответственной за диспергирование биоплёнок посредством синтеза фенол-растворимых модулинов [9], совокупностью химических, физических и физиологических механизмов, включая факторы фенотипической диверсификации популяций, создают условия для защиты бактерий от антибиотиков, дезинфектантов и тяжёлых металлов [10]. Даже высокие концентрации антибиотиков не эффективны в отношении бактерий S. aureus, переведённых в состояние биоплёнки [9, 10].

Вместе с тем биоплёнки стафилококков, как и других патогенных плёнкообразующих бактерий стрептококков, P. aeruginosa, E. coli, Mycobacterium tuberculosis, создают условия для проявления генерации или собственно генерации клеток-персистеров, метаболически неактивных клеточных форм, находящихся в дормантном состоянии, близком к некультивируемому, с заблокированными на активную реализацию процессами биосинтеза РНК, ДНК, белков, пептидогликанов и фолиевой кислоты, служащими мишенями воздействия классических антибиотиков [11, 12]. В силу особенностей метаболизма и физиологического состояния персистеры защищены от действия классических антибиотиков и тяжёлых металлов [11, 12, 14, 15], активно экспрессируют энергозависимый экспортирующий белок TolC, способствующий эффективному выведению токсичных соединений из клетки [14], гены шаперонов, регулоны множественной устойчивости к антибиотикам, белки холодового шока [10], определяются в микробных биоплёнках в количествах, в тысячи раз превышающих содержание этих клеточных форм в планктонных популяциях [10]. Для разработки средств борьбы с такими персистентными инфекциями требуются принципиально иные, нежели основанные на воздействии на активные метаболические процессы в популяции возбудителей, подходы к антимикробной химиотерапии [11, 12, 15].

В контексте описанных механизмов переживания бактериями неблагоприятных условий существования даже кратковременная экспозиция с катионами цинка индуцирует переход возбудителей в некультивируемое состояние, связанное с генерацией клеток-персистеров. Реализация эффектов катионов в ходе образования биоплёнок S. aureus с участием фибронектин-связывающих белков происходит на стадии, следующей сразу за первичным прилипанием [13]. В полностью сформированных биоплёнках E. coli цинк не проникает глубоко и действует по поверхности матрикса [10].

Следовательно, обменные процессы, связанные с транспортом катионов цинка, образование биоплёнок и генерация персистеров обоснованно представляются механизмами обеспечения переживания бактериальных популяций, имеющими глубокие, последовательно реализуемые причинно-следственные связи, в совокупность которых катионы цинка вовлечены на инициальных и ранних постинициальных этапах [10, 13].

Результаты настоящего исследования свидетельствуют о протективном действии катионов цинка, нанесённых на диск с антибиотиком, в отношении бактерий S. aureus, подвергающихся воздействию этого антибиотика. Эффект реализуется при использовании физиологической концентрации цинка (протекция бактерий в 2,9% наблюдений) и в присутствии на диске одного, четырёх или восьми катионов цинка на молекулу антибиотика (последовательное нарастание от 1,4 до 5,7% случаев протекции). При этом наиболее выраженное протективное действие катионов (от 27,3 до 45,5% наблюдений в селекционированных по чувствительности изолятах) отмечено в условиях 10-минутной предобработки газона бактерий катионами цинка на местах последующей установки диска с антибиотиком. В этих опытах до половины наблюдений демонстрировали очевидное протективное действие определённой концентрации катионов цинка (см. табл. 1 и 2).

Можно спорить о том, насколько правомерны сравнение начальных этапов формирования газона бактерий с инициальными стадиями образования биоплёнок и рассмотрение краткосрочной экспозиции катионов цинка с клетками на формирующемся газоне в качестве подобия дисперсии катионов по поверхности плёнки [10, 13], но не подлежит сомнению высочайшая скорость реагирования микробов на присутствие тяжёлого металла, отражающая быстрое включение механизмов стрессовых реакций в условиях реализации токсического воздействия. Произведённые расчёты показывают, что концентрации цинка в местах предобработки газона бактерий, ответивших на воздействие металла снижением чувствительности к антибиотикам, по отношению к которым они и были подобраны, варьировали в диапазоне от 0,25 до 2,0 мг/мл, а в отдельных наблюдениях достигали 8,0 мг/мл, т.е. более чем на 3 порядка превышали физиологические и следовательно могут оцениваться в качестве токсичных.

Снижение чувствительности бактерий к антибиотикам выступает естественным следствием немедленного включения S. aureus механизмов протекции популяции от токсического воздействия тяжёлого металла, общность которых с механизмами защиты бактерий от других неблагоприятных воздействий хорошо документирована в научной периодике [10].

Заключение

В совокупности современных представлений о природе и путях возникновения множественной лекарственной устойчивости возбудителей инфекционных заболеваний человека, связывающих динамическое нарастание количества резистентных к антибиотикам и другим антимикробным препаратам бактерий с наличием в экосистеме доступных микробам меди и цинка в условиях продолжающегося нарастания содержания тяжёлых металлов в окружающей среде, появляется важнейшая временная категория, определяющая эволюционную динамику резистентности как процесс, запускаемый импульсным воздействием тяжёлых металлов, конкретно цинка, и, не исключено, не контролируемый в дальнейшем для подвергшейся такому воздействию популяции бактерий меняющимися условиями окружения.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

×

Об авторах

С. Б. Чекнёв

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Автор, ответственный за переписку.
Email: cheknev@gamaleya.org
ORCID iD: 0000-0002-9512-7148
Чекнёв Сергей Борисович, д-р мед. наук, заместитель директора по научной работе, заведующий лабораторией межклеточных взаимодействий, 123098, г. Москва Россия

Е. И. Вострова

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: fake@neicon.ru
ORCID iD: 0000-0002-9214-0590
123098, г. Москва Россия

М. А. Сарычева

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: fake@neicon.ru
ORCID iD: 0000-0003-0250-1581
123098, г. Москва Россия

А. В. Востров

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: fake@neicon.ru
ORCID iD: 0000-0003-2834-537X
123098, г. Москва Россия

Список литературы

  1. Чекнёв С.Б., Вострова Е.И., Сарычева М.А., Кисиль С.В., Анисимов В.В., Востров А.В. Торможение роста бактерий в культурах Streptococcus pyogenes и Streptococcus agalactiae в присутствии катионов меди и цинка. Журнал микробиологии, эпидемиологии и иммунобиологии. 2017; (3): 26-35.
  2. Чекнёв С.Б., Вострова Е.И., Апресова М.А., Писковская Л.С., Востров А.В. Торможение роста бактерий в культурах Staphylococcus aureus и Pseudomonas aeruginosa в присутствии катионов меди и цинка. Журнал микробиологии, эпидемиологии и иммунобиологии. 2015; (2): 9-17.
  3. Bunnell B.E., Escobar J.F., Bair K.L., Sutton M.D., Crane J.K. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli. PLoS One. 2017; 12(5): e0178303. Doi: https://doi.org/10.1371/journal.pone.0178303
  4. Chohan Z.H., Supuran C.T., Scozzafava A. Metal binding and antibacterial activity of ciprofloxacin complexes. J. Enzyme Inhib. Med. Chem. 2005; 20(3): 303-7. Doi: https://doi.org/10.1080/14756360310001624948
  5. Uivarosi V. Metal complexes of quinolone antibiotics and their applications: an update. Molecules. 2013; 18(9): 11153-97. Doi: https://doi.org/10.3390/molecules180911153
  6. Zarkan A., Mackline H.R., Chirgadze D.Y., Bond A.D., Hesketh A.R., Hong H.J. Zn(II) mediates vancomycin polymerization and potentiates its antibiotic activity against resistant bacteria. Sci. Rep. 2017; 7(1): 4893. Doi: https://doi.org/10.1038/s41598-017-04868-2
  7. Chandrangsu P., Rensing C., Helmann J.D. Metal homeostasis and resistance in bacteria. Nature Rev. Microbiol. 2017; 15(6): 338-50. Doi: https://doi.org/10.1038/nrmicro.2017.15
  8. Ma Z., Chandrangsu P., Helmann T.C., Romsang A., Gaballa A., Helmann D. Bacillithiol is a major buffer of the labile zinc pool in Bacillus subtilis. Molec. Microbiol. 2014; 94(4): 756-70. Doi: https://doi.org/10.1111/mmi.12794
  9. Dastgheyb S.S., Villaruz A.E., Le K.Y., Tan V.Y., Duong A.C., Chatterjee S.S., et al. Role of phenol-soluble modulins in formation of Staphylococcus aureus biofilms in synovial fluid. Infect. Immun. 2015; 83(7): 2966-75. Doi: https://doi.org/10.1128/IAI.00394-15
  10. Harrison J.J., Ceri H., Turner R.J. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 2007; 5(12): 928-38.
  11. Hurdle J.G., Deshpande A. Bacterial persister cells tackled. Nature. 2018; 556(7699): 40-1. Doi: https://doi.org/10.1038/d41586-018-03440-w
  12. Hurdle J.G., O’Neill A.J., Chopra I., Lee R.E. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol. 2011; 9(1): 62-75. Doi: https://doi.org/10.1038/nrmicro2474
  13. Geoghegan J.A., Monk I.R., O’Gara J.P., Foster T.J. Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J. Bacteriol. 2013; 195(11): 2675-83. Doi: https://doi.org/10.1128/JB.02128-12
  14. Gerdes K., Semsey S. Pumping persisters. Nature. 2016; 534(7605): 41-2. Doi: https://doi.org/10.1038/nature18442
  15. Kim W., Zhu W., Hendricks G.L., Van Tyne D., Steele A.D., Keohane C.E., et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature. 2018; 556(7699): 103-7. Doi: https://doi.org/10.1038/nature26157

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Чекнёв С.Б., Вострова Е.И., Сарычева М.А., Востров А.В., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах