M. BOVIS BCG-1 (RUSSIA) SUB-STRAIN GENOME STABILITY INVESTIGATION WITHIN THE ENTIRE PRODUCTION PROCESS

Cover Page


Cite item

Full Text

Abstract

Aim. The aim of the current study was to analyze the genome structure of the M. bovis BCG-1 (Russia) sub-strain, used for the vaccine production, as well as its genome stability within the entire production process. Materials and methods. Whole genome sequencing and M. bovis BCG-1 (Russia) working seed lot and for the last production passage of the sub-strain cultivation from a number of the vaccine batches. Additionally, VNTR sequences of 24 locus analyses, RD patterns comparison, as well as spoligotyping were performed. Results. The whole genome sequence of the M. bovis BCG-1 (Russia) working seed lot was assembled, annotated and deposited to GenBank. On the basis of DU2- and RD-regions analyzes M. bovis BCG-1 (Russia) sub-strain was confirmed to be belonged to BCG Russia strains of DU2-I group. Whole genome sequencing followed by comparative analysis of RD patterns and SNPs confirmed the stability of the vaccine sub-strain genome from the working seed lot to a number of the vaccine batches obtained within the two-years period. VNTR profile and spoligopattern exactly matched the M. bovis BCG-1 (Russia). Conclusion. Thus the M. bovis BCG-1 (Russia) sub-strain genome identity and stability have been studied and demonstrated. The obtained result confirmed the vaccine production process consistency.

About the authors

E. V. Otrashevskaya

Scientific and Production Association for Immunobiological Preparations «Microgen»

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

V. N. Vinokurova

Scientific and Production Association for Immunobiological Preparations «Microgen»

Email: noemail@neicon.ru
Russian Federation

E. A. Shilikov

Federal Scientific and Clinical Centre of Phusical-Chemical Medicine

Email: noemail@neicon.ru
Russian Federation

E. A. Sotnikova

Federal Scientific and Clinical Centre of Phusical-Chemical Medicine

Email: noemail@neicon.ru
Russian Federation

T. A. Perevyshina

Scientific and Production Association for Immunobiological Preparations «Microgen»

Email: noemail@neicon.ru
Russian Federation

S. A. Kolchenko

Federal Scientific and Clinical Centre of Phusical-Chemical Medicine

Email: noemail@neicon.ru
Russian Federation

T. B. Butusova

Federal Scientific and Clinical Centre of Phusical-Chemical Medicine

Email: noemail@neicon.ru
Russian Federation

E. S. Kostryukova

Federal Scientific and Clinical Centre of Phusical-Chemical Medicine

Email: noemail@neicon.ru
Russian Federation

E. N. Ilina

Federal Scientific and Clinical Centre of Phusical-Chemical Medicine

Email: noemail@neicon.ru
Russian Federation

G. M. Ignalev

Scientific and Production Association for Immunobiological Preparations «Microgen»; St. Petersburg Research Institute of Vaccines and Sera and the Bacterial Preparations Factory

Email: noemail@neicon.ru
Russian Federation

References

  1. Леви Д.Т., Обухов Ю.И., Александрова Н.В., Волкова Р.А., Эльберт Е.В., Альварес Фигероа М.В., Прокопенко А.В., Луданный Р.И.Оценка подлинности и стабильности вакцины БЦЖ методом мультиплексной ПЦР. Биопрепараты. Профилактика, диагностика, лечение. 2016, 16 (1): 49-53.
  2. Abdallah A.M., Hill-Cawthorne G.A., Otto T.D. et al. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cellwall adaptations. Sci. Rep. 2015, 5: 15443 (online).
  3. Bedwell J., Kairo S.K., Behr M.A., Bygraves J.A. Identification of substrains of BCG vaccine using multiplex PCR. Vaccine. 2001, 19: 2146-2151.
  4. Bespyatykh J.A., Zimenkov D.V., Shitikov E.A. et al. Spoligotyping of Mycobacterium tuberculosis complex isolates using hydrogel oligonucleotide microarrays. Infection, Genetics, Evolution, 2014, doi:http://dx.doi.org/l0.1016/j.meegid.2014.04.024.
  5. Boetzer M., Henkel C.V., Jansen H.J. et al. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2001, 4: 578-579.
  6. Brosch R., Gordon S.V., Garnier T. et al. Genome plasticity of BCG and impact on vaccine efficacy. Proc. Nat. Acad. Sci. USA. 2007, 13: 5596-5601.
  7. Coll F., Mallard K., Preston M.D. et al. SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences. Bioinformatics. 2012, 22: 29912993.
  8. Delcher A.L., Phillippy A., Carlton J., Salzberg S.L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002, 11: 2478-2483.
  9. Knezevic I., Corbel M.J. WHO discussion on the improvement of the quality control of BCG vaccines. Pasteur Institute, Paris, France, 7 June 2005. Vaccine, 2006, 24: 3874-3877.
  10. Koboldt D.C., Zhang Q., Larson D.E. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012, 3: 568-576.
  11. Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012, 4: 357-359.
  12. Leung A.S., Tran V., Wu Z. et al. Novel genome polymorphisms in BCG vaccine strains and impact on efficacy. BMC Genomics. 2008, 9: 413.
  13. Li H., Handsaker B., Wysoker A. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009, 16: 2078-2079.
  14. Magdalena J., Supply P., Locht C. Specific differentiation between Mycobacterium bovis BCG and virulent strains of the Mycobacterium tuberculosis complex. J. Clin. Microbiol. 1998, 9: 2471-2476.
  15. Markey K., Ho M.M., Choudhury B. et al. Report of an international collaborative study to evaluate the suitability of multiplex PCR as an identity assay for different sub-strains of BCG vaccine. Vaccine. 2010, 28: 6964-6969.
  16. Mostowy S., Tsolaki A.G., Small P.M. et al. The in vitro evolution of BCG vaccines. Vaccine. 2003, 21: 4270-4274.
  17. Pan Y., Yang X., Duan J. et al. Whole-Genome sequences of four Mycobacterium bovis BCG vaccine strains. J. Bacteriol. 2011, 12: 3152-3153.
  18. Pym A.S., Brosch R. Tools for the population genomics of the tubercle bacilli. Genome Res. 2000,12: 1837-1839.
  19. Sotnikova E.A., Shitikov E.A., Malakhova M.V. et al. Complete genome sequence of Mycobacterium bovis strain BCG-1 (Russia). Genome Announcements. 2016, 4: 1-2.
  20. Stefanova T. Quality control and safety assessment of BCG vaccines in the post-genomic era. Biotechnology Biotechnological Equipment. 2014, 28: 387-391.
  21. Supply Р., Allix C., Lesjean S. et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 12: 4498-4510.
  22. WHO. Informal Consultation on Standardization and Evaluation of BCG Vaccines, 22-23 September 2009, WHO, Geneva, Switzerland. p.1-25
  23. WHO. Information Sheet observed rate of vaccine reactions Bacille Calmette -Guerin (BCG) vaccine. Global Vaccine Safety, Immunization, Valines and Biologicals. Geneva. April 2012. p. 1-5.
  24. WHO. Report WHO Consultation on the characterisation of BCG vaccines. Geneva, Switzerland, 8-9 December, 2004. p. 1-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Otrashevskaya E.V., Vinokurova V.N., Shilikov E.A., Sotnikova E.A., Perevyshina T.A., Kolchenko S.A., Butusova T.B., Kostryukova E.S., Ilina E.N., Ignalev G.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies