ВЛИЯНИЕ СТРЕССОРОВ НА ОБРАЗОВАНИЕНЕКУЛЬТИВИРУЕМЫХ ФОРМ МИКРООРГАНИЗМОВ И ИХ ВОССТАНОВЛЕНИЕ


Цитировать

Полный текст

Аннотация

Проанализированы данные по влиянию
различных индукторов некультивируемого
состояния микроорганизмов и причин
реверсии, включающих не только действие
подходящих условий выращивания, но и
просто отмену неблагоприятных воздей-
ствий. Обсуждаются причины перехода в
некультивируемое состояние, которыми
может служить многообразие факторов,
таких как тепловой, щелочной, кислотный
или осмотический стрессы. Анализируются
факторы, способствующие восстановлению
из некультивируемого состояния, основ-
ными из которых являются фактор Rpf,
выделенный из Micrococcus luteus, и отме-
на действия эндогенных перекисей путем
добавления каталазы или пирувата на-
трия.

Об авторах

В А Мельникова

НИИ вакцин и сывороток им. И.И.Мечни-кова, Москва

НИИ вакцин и сывороток им. И.И.Мечни-кова, Москва

Н А Михайлова

НИИ вакцин и сывороток им. И.И.Мечни-кова, Москва

НИИ вакцин и сывороток им. И.И.Мечни-кова, Москва

Н О Вартанова

НИИ вакцин и сывороток им. И.И.Мечни-кова, Москва

НИИ вакцин и сывороток им. И.И.Мечни-кова, Москва

V A Melnikova

N A Mikhaylova

N O Vartanova

Список литературы

  1. Баснакьян И.А., Бондаренко В.М., Мельникова В.А. Стрессор-индуцибельные б
  2. Бухарин О.В., Гинцбург А.Л., Романова Ю.М. и др. Механизмы
  3. Ефимочкина Н.Р. Роль физико-химических и биологических воздействий в формировании толерантнос
  4. Салина Е.Г., Вострокнутова Г.Н., Шлеева М.О. и др. Роль межклеточных взаимодействий при образовании и
  5. Соколенко А.В. Некультивируемые формы бактерий: распространение в природе, индукторы некультивируемог
  6. Шпаков А.О. Сигнальные молекулы бактерий непептидной приро
  7. Шпаков А.О. Пептидные аутоиндукторы бактерий.
  8. Anuchin A.M., Mulyukin A.L., Suzina N.E. et al. Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiol. 2009, 155 (4): 1071-1079.
  9. Asakura H., Igimi S., Kawamoto K. et al. Role of in vivo passage on the environmental adaptation of enterohemorrhagic Escherichia coli О157:H7: Cross-induction of the viable but nonculturable state by osmotic and oxidative stresses. FEMS Microbiol. Lett. 2005, 253 (2): 243-249
  10. Asakura H., Kawamoto K., Haishima Y., et al. Differential expression of the outer membrane protein W (OmpW) stress response in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Res. Microbiol. 2008, 159 (9-10): 709-717.
  11. Buck A., Oliver J.D. Survival of spinachassociated Helicobacter pylori in the viable but nonculturable state. Food Control. 2010, 21 (8): 1150-1154.
  12. Chaturongakul S., Raengpradub S., Wiedmann M. et al. Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol. 2008, 16 (8): 388-396.
  13. Cunningham E., O'Byrne C., Oliver J.D. Effect of weak ac on Listeria monocytogenes survival: Evidence for a viable but nonculturable state in response to low pH. Food Control. 2009, 20 (12): 1141-1144.
  14. Gomes S.L., Simao R. de C.G. Stress responses: heat. In: Moselio Schaechter (ed.). Encyclopedia of Microbiology. Academic Press, Oxford, 2009, p.464-476.
  15. Halgasova N., Bukovska G., Ugorcakova J. et al. The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response. FEMS Microbiol. Lett. 2002, 216 (1): 77-84.
  16. Hecker M., Volker U. General stress response of Bacillus subtilis and other bacteria. Adv. Microb. Physiol. 2001, 44: 35-91.
  17. Jallouli W., Zouari N., Jaoua S. Involve ment of oxidative stress and growth at high cell density in the viable but nonculturable state of Photorhabdus temperata ssp. temperata strain K122. Process Biochemistry. 2010, 45 (5): 706-713.
  18. Kaprelyants A.S., Kell D.K. Do bacteria need to communicate with each other for growth? Trends Microbiol. 1996, 4 (6): 237-242.
  19. Keep N.H., Ward J.M., Cohen-Gonsaud M. et al. Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol. 2006, 14 (6): 271-276.
  20. Klancnik A., Botteldoorn N., Herman L. et al. Survival and stress induced expression of groEL and rpoD of Campylobacter jejuni from different growth phases. Int. J. Food Microbiol. 2006, 112 (3): 200-207.
  21. Klancnik A., Guzej B., Jamnik P. et al. Stress response and pathogenic potential of Campylobacter jejuni cells exposed to starvation. Res. Microbiol. 2009, 160 (5): 345-352.
  22. Kong In-Soo, Bates T.C., Hulsmann A. et al. Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 2004, 50 (3): 133-142.
  23. Kuznetsov B.A., Davydova M.E., Shleeva M.O. et al. Electrochemical investigation of the dynamics of Mycobacterium smegmatis cells transformation to dormant, nonculturable form. Bioelectrochemistry. 2004, 64 (2): 125-131.
  24. Lai C.-J., Chen S.-Y., Lin I.-H. et al. Change of protein profiles in the induction of the viable but nonculturable state of Vibrio parahaemolyticus. Int. J. Food Microbiol. 2009, 135 (2): 118-124.
  25. Manahan S.H., Steck T.R. The viable but nonculturable state in Agrobacterium tumefaciens and Rhizobium meliloti. FEMS Microbiol. Ecol. 1997, 22 (1): 29-37.
  26. McDougald D., Rice S.A., Weichart D. et al. Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol. 1998, 25 (1): 1-9.
  27. Mizunoe Y., Wai S.N., Ishikawa T. et al. Resuscitation of viable but nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS Microbiol. Lett. 2000, 186 (1): 115-120.
  28. Mukamolova G.V., Kaprelyants A.S., Kell D.B. Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase. Antonie van Leeuwenhoek. 1995, 67 (3): 289-295.
  29. Mukamolova G.V., Yanopolskaya N.D., Kell D.B., Kaprelyants A.S. On resuscitation from the dormant state of Micrococcus luteus. Antonie van Leeuwenhoek. 1998, 73 (3): 237-243.
  30. Nolan A., Weiden M.D., Hoshino Y. et al. Cd40 but not CD154 knockout mice have reduced inflammatory response in polymicrobial sepsis: a potential role for Escherichia coli heat shock protein 70 in CD40-mediated inflammation in vivo. Shock. 2004, 22 (6): 538-542.
  31. Perschinka H., Mayr M., Millonig G. et al. Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Artrioscler. Thromb. Vasc. Biol. 2003, 23 (6): 1060-1065.
  32. Purcell A.W., Todd A., Kinoshita G. et al. Association of stress proteins with autoantigens: a possible mechanism for triggering autoimmunity? Clin. Exp. Immunol. 2003, 132: 193-200.
  33. Ritossa F.A. New puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 1962, 18: 571-573.
  34. Ron E.Z. Editorial: an update on the bacterial stress response. Res. Microbiol. 2009, 160 (4): 243-244.
  35. Sachidanandham R., Gin K.Y., Poh C.L. Monitoring of active but non-culturable bacterial cells by flow cytometry. Biotechnol. Bioeng. 2005, 89 (1): 24-31.
  36. Sachidanandham R., Gin K.Y. Flow cytometric analysis of prolonged stress-dependent heterogeneity in bacterial cells. FEMS Microbiol. Lett. 2009, 290 (2): 143-148.
  37. Shleeva M.O., Bagramyan K., Telkov M.V. et al. Formation and resuscitation of "nonculturable" cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiol. 2002, 148 (5): 1581-1591.
  38. Shleeva M.О., Mukamolova G.V., Young M. et al. Formation of non-culturable cells of Mycobacterium smegmatis in stationary рhase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation. Microbiol. 2004, 150 (6): 1687-169
  39. Stevenson B.S., Eichorst S.F., Wertz J.T. et al. New strategies for cultivation and detection of previously uncultured microbes. Appl. Envir. Microbiol. 2004, 70 (8): 4748- 4755.
  40. Tiganitas А., Zeaki N., Gounadaki A.S. et al. Study of the effect of lethal and sublethal pH and aw stresses on the inactivation or growth of Listeria monocytogenes and Salmonella typhimurium. Int. J. Food Microbiol. 2008, 134 (2), 104-111
  41. Tissieres A., Mitahell H.K., Tracy U.M. Protein synthesis in salivary glands of Drosophila melanjgaster: relation to chromosome puffs. J.Mol.Biol. 1974, 84: 389-398.
  42. Wai S.N., Moriya T., Kondo K. et al. Resuscitation of Vibrio cholerae O1 strain TSI-4 from a viable but nonculturable state by heat shock. FEMS Microbiol. Lett. 1996, 136 (2): 187-191.
  43. Wong Н., Wang Р., Chen S.-Y. et al. Resuscitation of viable but non-culturable Vibrio parahaemolyticus a minimum salt medium. FEMS Microbiol. Lett. 2004, 233 (15): 269-27
  44. Yamamoto H., Hashimoto Y., Ezaki T. Study of nonculturable Legionella pneumophila cells during multiple-nutrient starvation. FEMS Microbiol. Ecol. 1996, 20 (3): 149-154.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Мельникова В.А., Михайлова Н.А., Вартанова Н.О., Melnikova V.A., Mikhaylova N.A., Vartanova N.O., 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах