СТАФИЛОКОККОВЫЕ БИОПЛЕНКИ: СТРУКТУРА, РЕГУЛЯЦИЯ, ОТТОРЖЕНИЕ


Цитировать

Полный текст

Аннотация

Стафилококки обладают способностью к формированию хронических (персистентных) инфекций, которые развиваются в нативных тканях и на инвазивных материалах, искусственно внедряемых в организм. Такие инфекции связаны с образованием биопленок. В обзоре дается определение биопленок, описываются факторы, принимающие участие в их формировании, дается характеристика адаптивной устойчивости стафилококковых биопленок, которая обеспечивает их длительное существование в организме хозяина. Описана генетическая организация и регуляция полисахаридных и белковых биопленок стафилококка. Обсуждается стратегия профилактики и лечения стафилококковых биопленочных заболеваний.

Полный текст

СТАФИЛОКОККОВЫЕ БИОПЛЕНКИ: СТРУКТУРА, РЕГУЛЯЦИЯ, ОТТОРЖЕНИЕ
×

Об авторах

А. Н Маянский

Медицинская академия, Н.Новгород

И. В Чеботарь

Медицинская академия, Н.Новгород

Список литературы

  1. Гинцбург А.Л., Ильина Т.С., Романова Ю.М. «Quorum sensing» или социальное поведение бактерий. Журн. микробиол. 2003, 5: 86-93.
  2. Маянский А.Н. Патогенетическая микробиология. Н. Новгород, Изд-во НГМА, 2006.
  3. Boisset S., Geissmann T., Huntzinger E. et al. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator rot by an antisense mechanism. Genes Dev. 2007, 21 (11): 1353-1366.
  4. Boles B.R., Horswill A.R. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathol. 2008, 4 (4): 1-13 (e1000052).
  5. Bowden M.G., Heuck A.P., Ponnuraj K. et al. Evidence for the «dock, lock, and latch» ligand binding mechanism of the staphylococcal microbial surface component recognizing adhesive matrix molecules (MSCRAMM) SdrG. J. Biol. Chem. 2008, 283 (1): 638-647.
  6. Bowden M.G., Visai L., Longshaw C.M. et al. Is the GelD lipase from Staphylococcus epidermidis a collagen binding adhesion ? Ibid. 2002, 277 (45): 43017-43023.
  7. Burton E., Gawands P.V., Yakandawala N. et al. Antibiofilm activity of GlmU enzyme inhibitorts against catheter-associated uropathogenes. Antimicrob. Agents Chemother. 2006, 50 (5): 1835-1840.
  8. Cerca N., Jefferson K.K., Maira-Litran T. et al. Molecular basis for preferential protective efficacy of antibodies directed to the poorly acetylated form of staphylococcal poly-N-acetyl-beta-(1-6)-glucosamine. Ibid. 2007, 75(7): 3406-3413.
  9. Chaignon P., Sadovskaya I., Ragunah Ch. et al. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl. Microbiol. Biotechnol. 2007, 75(1): 125-132.
  10. Conrady D.G., Brescia C.C., Horii K. et al. A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc. Natl. Acad. Sci. USA. 2008, 105(49): 19456-19461.
  11. Corrigan R.M., Rigby D., Handley P., Foster T.J. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology. 2007, 153(6): 2435-2446.
  12. Costerton J.W., Veeh R., Shirtliff M. et al. The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Invest. 2003, 112(10): 1466-1477.
  13. Cramton S.E., Ulrich M., Goetz F., Doering G. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 2001, 69 (6): 4079-4085.
  14. Cucarella C., Solano C., Valle J. et al. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 2001, 183(9): 2888-2896.
  15. Davies D.G., Parsek M.R., Pearson J.P. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998, 280(5361): 295-298.
  16. De Beer D., Srinivasan R., Stewart P.S. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 1994, 60(12): 4339-4344.
  17. Izano E.A., Amarante M.A., Kher W.B. et al. Differential roles of poly-N-Acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Ibid. 2008, 74(2): 470-476.
  18. Jabra-Rizk M.A., Meiller T.F., James C.E., Shirtliff M.E. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chemother. 2006, 50(4): 1463-1469.
  19. Johnson M., Cockayne A., Morrissey J.A. Ironregulated biofilm formation in Staphylococcus aureus Newman requires ica and the secreted protein Emp. Infect. Immun. 2008, 76(4): 1756-1765.
  20. Josefsson E., Hartford O., O’Brien L. et al. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J. Infect. Dis. 2001, 184(12): 1572-1580.
  21. Juda M., Paprota K., Jaloza D. et al. EDTA as a potential agent preventing formation of Staphylococcus epidermidis biofilm on polichloride vinyl biomaterials. Ann. Agric. Environ. Med. 2008, 15(2): 237-241.
  22. Kaplan J.B., Ragunath C., Velliyagounder K. et al. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents. Chemother. 2004, 48(7): 2633-2636.
  23. Knobloch J.K., Jaeger S., Horstkotte M.A. et al. RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor sigmaB by repression of the negative regulator gene icaR. Infect. Immun. 2004, 72(7): 3838-3848.
  24. Lim Y., Jana M., Luong T.T., Lee Ch.Y. Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J. Bacteriol. 2004, 186(3): 722-729.
  25. Mack D., Fisher W., Krokotsch A. et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. Ibid. 1996, 178(1): 175-183.
  26. Merino N., Toledo-Arana A., Vergara-Irigaray M. et al. Protein A-mediated multicellular behavior in Staphylococcus aureus. Ibid. 2009, 191(3): 832-843.
  27. Nilsson I.M., Patti J.M., Bremell T. et al. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. J. Clin. Invest. 1998, 101(12): 2640-2649.
  28. O’Gara J.P. Ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett. 2007, 270(2): 179-188.
  29. O’Neill E., Pozzi C., Houston P. et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 2008, 190(11): 3835-3850.
  30. Opperman T.J., Kwasny S.M., Williams J.D. et al. Aryl rhodanines specifically inhibit staphylococcal and enterococcal biofilm formation. Antimicrob. Agents Chemother. 2009, 50(10): 4357-4367.
  31. Rohde H., Burandt E.C., Siemssen N. et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials. 2007, 28 (9): 1711-1720.
  32. Roveta S., Marchese A., Schito G.C. Activity of daptomycin on biofilms produced on a plastic support by Staphylococcus spp. Int. J. Antomicrob. Agents. 2008, 31 (4): 321-328.
  33. Sadykov M.R., Olson M.E., Halouska S. et al. Tricarboxylic acid cycle-dependent regulation of Staphylococcus epidermidis polysaccharide intercellular adhesin synthesis. J. Bacteriol. 2008, 190(23): 7621-7632.
  34. Sakarya S., Oncu S., Oncu S. et al. Neuramidase produces dose-dependent decrease of slime production and adherence of slime-forming, coagulase-negative staphylococci. Arch. Med. Res. 2004, 35(4): 275-278.
  35. Sass P., Bierbaum G. Lytic activity of recombinant bacteriophage θ11 and θ12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl. Environ. Microbiol. 2007, 73 (1): 347-352.
  36. Schlag S., Nerz C., Birkenstock T.A. et al. Inhibition of staphylococcal biofilm formation by nitrite. J. Bacteriol. 2007, 189 (21): 7911-7919.
  37. Shanks R.M., Donegan N.P., Graber M.L. et al. Heparin stimulates Staphylococcus aureus biofilm formation. Infect. Immun. 2005, 73 (8): 4596-4606.
  38. Shanks R.M., Meehl M.A., Brothers K.M. et al. Genetic evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Ibid. 2008, 76 (6): 2469-2477.
  39. Shaw L.N., Jonsson I.-M., Singh V.K. et al. Inactivation of traP has no effect on the Agr quorum-sensing system or virulence of Staphylococcus aureus. Infect. Immun. 2007, 75 (9): 4519-4527.
  40. Speziale P., Visai L., Rindi S. et al. Prevention and treatment of Staphylococcus biofilms. Curr. Med. Chem. 2008, 15: 3185-3195.
  41. Sun D., Accavitti M.A., Bryers J.D. Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clin. Diagn. Lab. Immunol. 2005, 12(1): 93-100.
  42. Toledo-Arana A., Merino N., Vergara-Irigaray M. et al. Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. J. Bacteriol. 2005, 187(15): 5318-5329.
  43. Tormo M.A., Marti M., Valle J. et al. SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J. Bacteriol. 2005, 187(7): 2348-2356.
  44. Tu Quoc P.H., Genevaux P., Pajunen M. et al. Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect. Immun. 2007, 75(3): 1079-1088.
  45. Vergara-Irigaray M., Maira-Litran T., Merino N. et al. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbiology. 2008, 154(3): 865-877.
  46. Vergara-Irigaray M., Valle J., Merino N. et al. Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect. Immun. 2009, 77(9): 3978-3991.
  47. Wu J.A., Kusuma C., Mond J.J., Kokai-Kun J.F. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob. Agents Chemother. 2003, 47(11): 3407-3414.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Маянский А.Н., Чеботарь И.В., 2011

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах