АНТИБАКТЕРИАЛЬНАЯ И АНТИМИКОТИЧЕСКАЯ АКТИВНОСТЬ ХИТОЗАНА: МЕХАНИЗМЫ ДЕЙСТВИЯ И РОЛЬ СТРУКТУРЫ


Цитировать

Полный текст

Аннотация

Хитозановый биополимер, получаемый методом деацетилирования из хитина, обладает антибактериальным и антимикотическим действием. В обзоре приводятся известные на сегодняшний день данные о механизмах биоцидного действия хитозана. Обсуждается роль химической структуры хитозанового полимера — молекулярной массы, степени деацетилирования и наночастиц в проявлении им антибактериальной и антимикотической активности.

Полный текст

АНТИБАКТЕРИАЛЬНАЯ И АНТИМИКОТИЧЕСКАЯ АКТИВНОСТЬ ХИТОЗАНА: МЕХАНИЗМЫ ДЕЙСТВИЯ И РОЛЬ СТРУКТУРЫ
×

Об авторах

С. Н Куликов

Казанский НИИ эпидемиологии и микробиологии

Ю. А Тюрин

Казанский НИИ эпидемиологии и микробиологии

Р. С Фассахов

Казанский НИИ эпидемиологии и микробиологии

В. П Варламов

Центр «Биоинженерия» РАН, Москва

Список литературы

  1. Герасименко Д.В., Авдиенко И.Д., Банникова Г.Е. и др. Антибактериальная активность водорастворимых низкомолекулярных хитозанов в отношении различных микроорганизмов. Прикл. биохим. микробиол. 2004, 40 (3): 301–306.
  2. Дмитриева Н.Ф., Тимофеев Ю.М. Липо- тейхоевые и тейхоевые кислоты патогенных стрептококков: структура, функции, роль во взаимодействии возбудителя с макроорганизмом. Журн. микробиол. 2007, 6: 100-107.
  3. Ильина А.В., Варламов В.П., Ермаков Ю.А. и др. Хитозан — природный полимер для формирования наночастиц. ДАН. 2008, 421 (2): 199-201.
  4. Куликов С.Н., Тюрин Ю.А., Долбин Д.А. и др. Роль структуры в биологической активности хитозана. Вестн. Каз. технол. универ. 2007, 6: 10-15.
  5. Куликов С.Н., Чирков С.Н., Ильина А.В. и др. Влияние молекулярной массы хитозана на его противовирусную активность в растениях. Прикл. биохим. микробиол. 2006, 42 (2): 224-228.
  6. Хитин и хитозан: получение, свойства и применение. К.Г.Скрябина, Г.А.Вихорева, В.П.Варламов (ред.). М., Наука, 2002.
  7. Bierbaum G., Sahl H.G. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoil-L-alanine amidase. J. Bacteriol. 1987, 169: 5452-5458.
  8. Boorsma A., de Nobel H., ter Riet B. et al. Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast. 2004, 21: 413-427.
  9. Chung Y., Chen C. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology. 2008, 99: 2806-2814.
  10. Chung Y., Su Y., Chen C. et al. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 2004, 25 (7): 932-936.
  11. Didenko L.V., Gerasimenko D.V., Konstantinova N.D. et al. Ultrastructural study of chitosan effects on Klebsiella and staphylococci. Bull. Exp. Biol. Med. 2005, 140: 356-360.
  12. Eaton P., Fernandes J.C., Pereira E. et al. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy. 2008, 108 (10): 1128-1134.
  13. Fedtke I., Mader D., Kohler T. et al. A staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol. Microbiol. 2007, 65: 1078-1091.
  14. Fernandez J.C., Tavaria F.K., Soares J.C. et al. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol. 2008, 25 (7): 922-928.
  15. Fuchs S., Pane-Farre J., Kohler T. et al. Anaerobic gene expression in Staphylococcus aureus. J. Bacteriol. 2007, 189: 4275-4289.
  16. Gasch A.P., Spellman P.T., Kao C.M. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 2000, 11: 4241-4257.
  17. Helander I.M., Nurmiaho-Lassila E.L., Ahvenainen R. et al. Chitosan disrupts the barrier properties of the outer membrane of gramnegative bacteria. Int. J. Food Microbiol. 2001, 71: 235-244.
  18. Hernandez-Lauzardo A.N., Bautista-Banos S., Velazquez-del Valle M.G. et al. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.). Vuill. Carbohydr. Polym. 2008, 73: 541-547.
  19. Klis F.M., Mol P., Hellingwerf K. et al. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26: 239-256.
  20. Kohler C., von Eiff C., Peters G. et al. Physiological character i zation of a heme-def icient mutant of Staphylococcus aureus by a proteomic approach. J. Bacteriol. 2003, 185: 6928-6937.
  21. Kong M., Chen X.G., Liu C.S. et al. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E.coli. Colloids Surface B: Biointerfaces. 2008, 65: 197-202.
  22. Kumar A.B.V., Varadaraj M.C., Gowda L.R. et al. Characterization of chitooligosaccharides prepared by chitosanolysis with the aid of papain and pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem. J. 2005, 391: 167-175.
  23. Kumar A.B.V., Varadaraj M.C., Tharanathan R.N. Low molecular weight chitosan — preparation with the aid of pepsin, characterization, and its bactericidal activity. Biochim. Biophys. Acta. 2004, 1670 (2): 137-146.
  24. Lim S.H., Hudson S.M. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. 2003, C43 (2): 223-269.
  25. Liu H., Du Y., Wang X., Sun L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 2004, 95: 147-155.
  26. Moon J.S., Kim H.K., Koo H.C. et al. The antibacterial and immunostimulative effect of chitosan-oligosaccharides against infection by Staphylococcus aureus isolated from bovine mastitis. Appl. Microbiol. Biotechnol. 2007, 75: 989-998.
  27. Muzzarelli R., Tarsi R., Filippini O. et al. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother. 1990, 34: 2019-2023.
  28. Pag U., Oedenkoven M., Sass V. et al. Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an α-helical sequence template. J. Antimicrob. Chemother. 2008, 61: 341-352.
  29. Peschel A., Otto M., Jack R.W. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 1999, 274: 8405-8410.
  30. Qi L., Xu Z., Jiang X., Hu C. et al. Preparation and antibacterial activity of chitosan nanoparticles. Carb. Res. 2004, 339: 2693-2700.
  31. Raafat D., Bargen K., Haas A. et al. Insight into the mode of action of chitosan as an antibacterial compound. Appl. Env. Microbiol. 2008, 74 (12): 3764-3773.
  32. Rabea E.I., Badawy M.E., Stevens C.V. et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromol. 2003, 4 (6): 1457-1465.
  33. Rhoades J., Roller S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl. Environ. Microbiol. 2000, 66: 80-86.
  34. Schlievert P.M. Chitosan malate inhibits growth and exotoxin production of toxic shock syndrome-inducing Staphylococcus aureus strains and group A streptococci. Antimicrob. Agents Chemother. 2007, 51 (9): 3056-3062.
  35. Seymour I.J., Piper P.W. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology. 1999, 145: 231-239.
  36. Singla A.K., Chawla M. Chitosan: some pharmaceutical and biological aspects — an update. J. Pharm. Pharmacol. 2001, 53: 1047-1067.
  37. Tharanathan R.N., Kittur F.S. Chitin — the undisputed biomolecule of great potential. Crit. Rev. Nutr. 2003, 43: 61-87.
  38. Thevissen K., Ferket K.K., Francois I.E. et al. Interactions of antifungal plant defensins with fungal membrane components. Peptides. 2003, 24: 1705-1712.
  39. Thevissen K., Warnecke D.C., Francois I.E. et al. Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem. 2004, 279: 3900-3905.
  40. Tomitori H., Kashiwagi K., Asakawa T. et al. Multiple polyamine transport systems on the vacuolar membrane in yeast. Biochem. J. 2001, 353: 681-688.
  41. Wiedemann C., Kokai-Kun J.F., Kristian S.A. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocominal infections. Nat. Med. 2004, 10: 243-245.
  42. Zakrzewska A., Boorsma A., Brul S. et al. Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukar. Cell. 2005, 4 (4): 703-715.
  43. Zakrzewska A., Boorsma A., Delneri D. et al. Cellular processes and pathways that protect Saccharomyces cerevisiae cells against the plasma membrane-perturbing compound chitosan. Ibid. 2007, 6 (4): 600-608.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Куликов С.Н., Тюрин Ю.А., Фассахов Р.С., Варламов В.П., 2009

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах