Оригинальное исследование https://doi.org/10.36233/0372-9311-353

Разработка метода молекулярного субтипирования Bacillus anthracis с использованием HRM-ПЦР

Печковский Г.А.^{1™}, Еременко Е.И.¹, Рязанова А.Г.¹, Писаренко С.В.¹, Шапаков Н.А.¹, Аксенова Л.Ю.¹, Семенова О.В.¹, Тимченко Л.Д.², Куличенко А.Н.¹

¹Ставропольский противочумный институт Роспотребнадзора, Ставрополь, Россия; ²Северо-Кавказский федеральный университет, Ставрополь, Россия

Аннотация

Введение. Bacillus anthracis — возбудитель сибирской язвы, патоген, характеризующийся высокой генетической мономорфностью, затрудняющей дифференциацию штаммов, в связи с чем актуальна разработка эффективных методов молекулярного типирования.

Цель исследования. Выбор маркерных однонуклеотидных полиморфизмов (SNP) для типирования генетических групп *B. anthracis* и разработка метода их лабораторного определения с использованием HRM-ПЦР.

Материалы и методы. Выравнивание корового генома 222 штаммов *B. anthracis* из базы данных GenBank и 66 штаммов из коллекции патогенных микроорганизмов ФКУЗ «Ставропольский противочумный институт» Роспотребнадзора проводили с использованием программы «Parsnp». Дендрограмму на основе 7242 SNP корового генома построили в программе «MEGA X». Штаммы для валидации метода HRM включали представителей различных генетических групп. Реакцию HRM-ПЦР проводили с использованием наборов «Type-it HRM PCR Kit» и «КАРА HRM FAST qPCR Kit» на амплификаторе ДНК «Rotor Gene» с функцией HRM. Анализ и визуализацию данных выполняли пользовательскими скриптами в среде разработки языка Python и языка R.

Результаты и обсуждение. Определены маркерные SNP для 6 генетических групп *B. anthracis*, позволяющие определять принадлежность штаммов к одному из 7 новых субкластеров. Подобраны пары праймеров, оптимизированы параметры HRM-ПЦР для дискриминации разных аллелей SNP-локусов и разработана схема анализа.

Заключение. Таким образом, выбраны маркерные SNP для определения генетических субкластеров *B. anthracis* A.Br.CEA, A.Br.STI, A.Br.Tsiankovskii, B.Br.Europe, B.Br.Siberia, B.Br.Asia, B.Br.018 и разработан новый лабораторный метод молекулярного субтипирования *B. anthracis* с использованием HRM-ПЦР.

Ключевые слова: генотипирование, SNP, HRM, Bacillus anthracis, полногеномное секвенирование, филогенетический анализ

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Для цитирования: Печковский Г.А., Еременко Е.И., Рязанова А.Г., Писаренко С.В., Шапаков Н.А., Аксенова Л.Ю., Семенова О.В., Тимченко Л.Д., Куличенко А.Н. Разработка метода молекулярного субтипирования *Bacillus anthracis* с использованием HRM-ПЦР. *Журнал микробиологии, эпидемиологии и иммунобиологии.* 2023;100(2):178–187. DOI: https://doi.org/10.36233/0372-9311-353 EDN: https://www.elibrary.ru/mnlmpr

Original Study Article https://doi.org/10.36233/0372-9311-353

Development of a method for molecular subtyping Bacillus anthracis using HRM PCR

Grigorii A. Pechkovskii[™], Evgeny I. Eremenko¹, Alla G. Ryazanova¹, Sergey V. Pisarenko¹, Nikolay A. Shapakov¹, Lyudmila Yu. Aksenova¹, Olga V. Semenova¹, Lyudmila D. Timchenko², Alexandr N. Kulichenko¹ ¹Stavropol Plague Control Research Institute, Stavropol, Russia; ²North-Caucasus Federal University, Stavropol, Russia

Abstract

Introduction. *Bacillus anthracis* is the causative agent of anthrax, a pathogen characterized by high genetic monomorphism that complicates differentiation of strains. Thus, molecular methods for pathogen typing require the improvement.

The aim of the study. To select marker SNPs for new genetic groups of *B. anthracis* and to develop a method for their laboratory identification using HRM PCR.

Materials and methods. The core genome of 222 strains of *B. anthracis* from the GenBank database and 66 strains from the collection of pathogenic microorganisms of the Stavropol Anti-Plague Institute was aligned using the parsnp software. A dendrogram based on 7242 core genome SNPs was built in MEGA X software. The strains for validation of the HRM method included representatives of various genetic groups. The HRM PCR reaction was performed using the "Type-it HRM PCR Kit" and "KAPA HRM FAST qPCR Kit" and a Rotor Gene DNA thermocycler with HRM function. Data analysis and visualization were performed using custom scripts in the Python and R development environments.

Results and discussion. Marker SNPs for 6 genetic groups have been identified, which make it possible to determine whether strains belong to one of 7 new subclusters. Pairs of primers were selected for the loci containing them, HRM PCR parameters were optimized for discrimination of different alleles of SNP loci, and an analysis scheme was developed.

Conclusion. Thus, marker SNPs were selected to determine the genetic subclusters A.Br.CEA, A.Br.STI, A.Br. Tsiankovskii, B.Br.Europe, B.Br.Siberia, B.Br.Asia, B.Br.018, and a new laboratory method was developed for molecular subtyping of *B. anthracis* using HRM PCR.

Keywords: genotyping, SNP, HRM, Bacillus anthracis, whole genome sequencing, phylogenetic analysis

Funding source. This study was not supported by any external sources of funding.

Conflict of interest. The authors declare no apparent or potential conflicts of interest related to the publication of this article.

For citation: Pechkovskii G.A., Eremenko E.I., Ryazanova A.G., Pisarenko S.V., Shapakov N.A., Aksenova L.Y., Semenova O.V., Timchenko L.D., Kulichenko A.N. Development of a method for molecular subtyping *Bacillus anthracis* using HRM PCR. *Journal of microbiology, epidemiology and immunobiology = Zhurnal mikrobiologii, epidemiologii i immunobiologii.* 2023;100(2):178–187.

DOI: https://doi.org/10.36233/0372-9311-353 EDN: https://www.elibrary.ru/mnlmpr

Введение

Возбудитель сибирской язвы имеет особый жизненный цикл, связанный с образованием исключительно устойчивых спор и длительным сохранением *Bacillus anthracis* в почве в покоящемся состоянии. В результате накопление мутаций ограничивается относительно редкими событиями инфицирования организма чувствительного хозяина, что приводит к небольшим генетическим вариациям внутри вида [1].

Несмотря на высокую генетическую однородность *B. anthracis*, выбраны и широко используются маркеры для генотипирования: VNTR (тандемные повторы) [2], SNR (однонуклеотидные повторы) [3] и SNP (однонуклеотидные полиморфизмы) [4].

SNP являются более стабильными генетическими маркерами, степень обратных мутаций и гомоплазии существенно меньше, чем, например, для VNTR, что удобно при изучении эволюции бактерии и определении специфичных генетических линий штаммов [5]. Такие особенности способствуют активному поиску и обнаружению информативных SNP.

Первые SNP *B. anthracis* были описаны при секвенировании изолятов штамма Ames, изолиро-

ванного из биологического материала жертвы атаки 2001 г. (штамм Florida) и от лабораторного штамма (штамм Porton). Сравнение штаммов показывало их высокое родство [6]. Отбор SNP и их проверка на 88 штаммах *В. anthracis* позволили выявить 6 специфичных для группы Ames SNP, 4 хромосомных, а также по одной для плазмид pXO1 и pXO2 [7].

В глобальном исследовании 1033 штаммов В. anthracis из 42 стран группой исследователей во главе с Van Ert были открыты 13 «канонических» SNP, разделяющих штаммы B. anthracis на 12 генетических групп. Каноническое генотипирование является ключевым и широко используется в генотипировании [4]. Позже был найден дополнительный SNP A.Br.011, который разделил самую многочисленную группу A.Br.008/009 на подгруппы A.Br.008/011 и A.Br.011/009 [8].

Группа японских исследователей на основе 19 полногеномных сиквенсов, в том числе 2 японских штаммов, классифицировали 2965 SNP на 80 групп SNP (tag типов) и выбрали среди них 3 специфичных для штаммов из Японии [9].

Новые SNP помогают в эпидемиологической расшифровке вспышек сибирской язвы; так, при инциденте заражения *B. anthracis* через инъекции

[©] Pechkovskii G.A., Eremenko E.I., Ryazanova A.G., Pisarenko S.V., Shapakov N.A., Aksenova L.Y., Semenova O.V., Timchenko L.D., Kulichenko A.N., 2023

Таким образом, уже описаны 13 канонических и по меньшей мере 57 дополнительных SNP, специфичных к определённым генетическим группам [4, 6–17]. В то же время было известно, что родственные генетические линии могут находиться на достаточно большом географическом расстоянии. Например, группа A.Br.008/009 встречается в странах Европы, Азии и Южной Америки, а линия A.Br.Aust.94 — в Австралии, странах Азии и Африки. С накоплением штаммов различного географического происхождения закономерным было увеличение количества генетических групп [4]. В частности, при исследовании 193 геномов B. anthracis на основе 5663 парсимоничных SNP выделили 16 основных генетических групп и 330 ветвей с указанием специфичных SNP для групп штаммов и отдельных штаммов [18]. В результате возникает необходимость в идентификации новых специфичных маркеров и разработке метода их определения.

SNP-генотипирование проводится преимущественно методами аллель-специфичной амплификации (TaqMan MGB (Minor Groove Binder), LNA, Melt-MAMA) и плавлением ампликонов с высоким разрешением (High Resolution Melting, HRM) ПЦР [19–21]. Для проведения TaqMan MGB и LNA используют специфичные зонды для SNP. Melt-МАМА основана на соответствии/несоответствии специальных праймеров к локусу с SNP. Принцип НRМ-ПЦР построен на детекции разницы температур плавления амликонов. Чувствительность метода достигает одного нуклеотида, благодаря чему с помощью HRM-анализа можно проводить детекцию SNP [22]. SNP- и VNTR-локусы применяются для комбинированного генотипирования штаммов методами HRM-ПЦР [23].

С появлением методов высокопроизводительного секвенирования полных геномов (WGS) основным подходом к определению генетического родства штаммов стал анализ SNP корового генома (WGS-SNP-типирование). WGS-SNP-типирование, хотя и позволяет получить исчерпывающую информацию о геномах исследуемых штаммов, является достаточно дорогим и требующим наличия соответствующего оборудования [24].

Данное исследование является логическим продолжением работы [25]. В ней на основе WGS-SNP-анализа корового генома набора штаммов были подробно описаны генетические сублинии, распространённые на территории России и приграничных стран. В ходе исследования было выяснено, что из 66 исследованных штаммов в коллекции патогенных микроорганизмов Ставропольского противочумного института Роспотребнадзора 49 относились к линии А, остальные 17 штаммов — к линии В. Штаммы линии А неравномерно распределялись между 5 каноническими группам. Больше всего, 35 штаммов, относилось к группе A.Br.008/011, 6 штаммов — к A.Br.Ames, 5 штаммов — к A.Br. Aust94, 2 штамма — к А.Вг.001/002, 1 штамм к А.Br.005/006. Все штаммы основной линии В принадлежали к канонической группе B.Br.001/002. Наиболее типичными для территории России и ближайших стран, имеющими наибольшую эпидемиологическую значимость, являются генетические субкластеры A.Br.STI, A.Br.Tsiankovskii в группе A.Br.008/011, а также новые — A.Br.CEA в группе A.Br.Aust94 и B.Br.Europe, B.Br.Siberia, B.Br.Asia, В.Вг.018 в группе В.Вг.001/002. Однако метод молекулярного субтипирования для дифференциации этих субкластеров без использования WGS-SNP не разработан.

Цель исследования — выбор маркерных SNP для типирования генетических субкластеров *В. anthracis* и разработка метода в формате HRM-ПЦР для их лабораторного определения.

Материалы и методы

Для построения дендрограммы было использовано 222 генома из коллекции GenBank и 66 геномов штаммов из коллекции патогенных микроорганизмов Ставропольского противочумного института Роспотребнадзора.

Коровое выравнивание осуществлялось с помощью программ «Parsnp» из пакета Harvest suit с референсным геномом Ames Ancestor (GCF_000008445.1). Из коровых SNP удаляли позиции, имеющие неизвестный нуклеотид «N». Далее SNP из файла VCF конкатенировали в файл FASTA. Филогенетическое дерево строили в программе «MEGA X» методом максимального правдоподобия с моделью замен Tamura-Nei.

SNP группировали в типы алгоритмом на основе языка программирования Python с модулями pandas, numpy, scipy и matplotlib.

Праймеры подбирали в программе «Primer-BLAST»¹ и синтезировали в Ставропольском противочумном институте.

ДНК *В. anthracis* получали согласно МУ 1.3 2569-09 «Организация работы лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I–IV групп патогенности».

Штаммы для валидации метода HRM включали представителей различных генетических групп.

Реакцию ПЦР для маркеров snp.cea, snp.sti, snp.tsian проводили набором «Туре-it HRM PCR

¹ URL: https://www.ncbi.nlm.nih.gov/tools/primer-blast

Kit» («Qiagen»), а для маркеров snp.sib, snp.eursib, snp.012 — «КАРА HRM FAST qPCR Kit» («Roche»). ПЦР-смесь готовили согласно инструкциям к наборам. Количество праймеров в реакции — 0,3 мкМ. Режим термоциклирования: первый этап — активация — 95°С 5 мин 1 цикл, второй этап — денатурация 95°С 10 с, отжиг 56°С 30 с, элонгация 72°С 10 с — 45 циклов, 3 этап — плавление от 60 до 85°С.

Анализ кривых плавления выполняли в среде разработки языка Python с модулями numpy, scipy, pandas. При анализе данных плавления последовательно использовали операции: интерполяция, вычисление производной, сглаживание и нормализация. Интерполяция данных производилась функциями numpy.linspace() и scipy.interpolate.make_ interp spline().

Производную вычисляли при помощи функции numpy.diff() и формулы -dF/dT, где F — массив данных флуоресценции, T — массив данных температур. Сглаживание данных осуществляли функцией numpy.convolve(). Нормализацию выполняли методом Max—Min с формулой:

 $(X - X_{\min})/(X_{\max} - X_{\min}),$

где Х — массив данных флуоресценции.

Сопоставление найденных генетических групп с филогенетической дендрограммой и визуализацию данных осуществляли в среде языка R с библиотеками ggtree и ggplot2.

Результаты и обсуждение

Исследование состояло из двух этапов: биоинформатического анализа геномных данных и создания лабораторной методики молекулярного субтипирования *B. anthracis* с использованием HRM-ПЦР.

Биоинформатический анализ геномных данных

На первом этапе исследования было выполнено коровое выравнивание на основе 288 геномов *B. anthracis* различных генетических групп. В итоге получены 7242 коровых SNP, на их основе построена филогенетическая дендрограмма.

Найденные SNP группировали в типы SNP. Тип SNP можно определить как SNP, разделяющие геномы штаммов на одинаковые подмножества, при этом одно подмножество имеет специфический нуклеотид, другое — альтернативный. Таким образом, один тип SNP обладает одинаковой специфичностью. Технически типом SNP являются SNP с одинаковым набором 0 или 1 (референсных и альтернативных нуклеотидов) в строках VCF-файла. В алгоритме группировки сначала определяются уникальные группы строк, затем каждой уникальной группе и соответствующим отдельным SNP присваивается название (тег или номер SNP). Найденные типы SNP сопоставляли с дендрограммой, построенной на основании SNP корового выравнивания, и определяли их специфичность (рис. 1).

Нами было сгруппировано 7242 SNP в 485 типов, из них 6 типов позволяли выделить субкластеры A.Br.CEA, A.Br.STI, A.Br.Tsiankovskii, B.Br. Europe, B.Br.Siberia, B.Br.Asia, B.Br.018. Из каждого типа отобрано по одному маркерному SNP (табл. 1). К локусам, содержащим маркерные SNP,

Fig. 1. Comparison of the phylogenetic dendrogram and the specific SNPs.

Субкластер Subcluster	Тип SNP Type of SNP	Позиции SNP в геноме референс-штамма Ames Ancestor и замена SNP positions in the genome of Ames Ancestor reference strains and substitution
A.Br.CEA	snp.cea	3640599(C→<u>T</u>) ; 4129922
A.Br.STI	snp.sti	3477612(T→<u>C</u>) ; 5018646; 5182989
A.Br.Tsiankovskii	snp.tsian	1512630;1570595; 1669436; 3462463(A→<u>G</u>) ; 3535633
B.Br.Siberia	snp.sib	852412; 1154559(G→<u>A</u>) ; 1718548; 3478630
B.Br.Europe B.Br.Siberia	snp.eursib	401345; 845118; 924463;1091101;1275037; 1340610(C→<u>A</u>) ; 1370064;1707494; 1845295; 1995289; 2203604; 2869433; 3370298; 3434429; 3445848; 3676855; 3744240; 3779450; 3996031; 4010553; 4087470;4099116; 4289474; 4301537; 4374768; 4425661; 4516984; 4741119; 4814382; 5002952; 5195702
B.Br.Europe B.Br.Siberia B.Br.Asia	snp.012	5161369(C→ <u>A</u>)

Таблица 1. Маркерные SNP, позволяющие дифференцировать субкластеры B. anrthracis

 Table 1. Marker SNPs enabling identification of B. anrthracis subclusters

Примечание. Выделены маркерные SNP, подчёркнута маркерная аллель.

Note. Marker SNPs are shown in bold, marker alleles are underlined.

разработаны праймеры (табл. 2). Snp.cea.3640599 был описан в исследовании с лабораторной методикой определения Melt-MAMA [14].

Молекулярное субтипирование B. anthracis с использованием НRM-ПЦР

На втором этапе исследования разрабатывался НRM-ПЦР-метод. Оптимизирован протокол проведения HRM-ПЦР, включающий режим термоциклирования и параметры реакции.

Для тестирования разработанного метода были использованы штаммы из различных специфических субкластеров и канонических линий (табл. 3, 4). Принадлежность к определённым каноническим и неканоническим генетическим линиям определялась по результатам ранее проведённого канонического типирования или полногеномного секвенирования. Отметим, что специфическая группа штаммов линии A.Br.Aust94 включала штаммы с уже известным генотипом A.Br.CEA по результатам секвенирования: 312/163, 73/42, 819/5, и неизвестным генотипом: 377/3, 456/13, 1180, 1190, 1283, 52/33, 462/471, 817/685. Штаммы специфической группы были выделены в процессе вспышек на территории Кавказа (Кабардино-Балкарская Республика, Республика Дагестан, Ставропольский край, Республика Ингушетия, Чеченская Республика, Азербайджан, Грузия).

Для типирования штаммов *B. anthracis* предлагается схема, в которой на первом этапе проводится типирование основных канонических линий, а на втором — дополнительное типирование. В частности, если определяется каноническая линия A.Br.008/009, то необходимо провести дополнительное типирование SNP snp.sti и snp.tsian, при выявлении A.Br.Aust94 — snp.cea, а при идентификации B.Br.001/002 — snp.sib, snp.eursib, snp.012.

Нужно отметить, что при типировании группы В.Вг.001/002 используется комбинация SNP: snp.sib, характерный для кластера В.Br.Siberia, snp. eursib — для кластеров В.Br.Siberia и В.Br.Europa, snp.012 — для кластеров В.Br.Siberia, В.Br.Europe и B.Br.Asia. При типировании комбинации 3 SNP удается выделить 4 группы (В.Br.Europe, В.Br.Siberia, B.Br.Asia, В.Br.018) из линии В.Br.001/002 с характерным набором нуклеотидов (табл. 5), что позволяет уменьшить количество ПЦР-реакций и более точно определять специфические группы.

В результате проведения тестирования были получены кривые плавления, произведён анализ кривых плавления и получены пики плавления.

Для snp.cea температура пика плавления ДНК штаммов специфической группы составила 71,06 \pm 0,08°С, а для неспецифической — 71,54 \pm 0,05°С. Температуры специфических групп для snp.sti и snp.tsian были равны 70,43 \pm 0,07 и 71,63 \pm 0,09°С,

Таблица 2. Праймеры к SNP-локусам B. anrthracis
Table 2. Primers for <i>B. anrthracis</i> SNP loci

SNP-локус SNP locus	Прямой праймер Forward primer	Обратный праймер Reverse primer
snp.cea.3640599	ACACCTAAACCTTCTTTTAATACATCT	ATTGACCCAACAGCTACGAA
snp.sti.3477612	GCAAATGGCTCTATTTCTGATT	ACAAACGAAAAGATTATCCAAAGTA
snp.tsian.3462463	ACACCACAAATATCACAAAACCT	TCTCTGATACTTCTAATCTGTTCGT
snp.012.5161369	TTTATTAGCAGGAGAACGTAGAAT	AATGCAACGAATGTAATGAAACAT
snp.eursib.1340610	CAAGGCATGAACAAGGAGCTA	AACCCCTGGATTGCCAGTAA
snp.sib.1154559	AGGCTTAGCAAAAGGTCCGA	GCTTTCCGTTTTCTTCACGG

Таблица 3. Результаты тестирования штаммов *B. anrthracis* (локусы — snp.cea, snp.sti, snp.tsian) методом HRM-ПЦР **Table 3.** Results of testing of *B. anthracis* strains (loci — snp.cea, snp.str, snp.tsian) by HRM PCR

Группа A.Br.CEA A.Br.CEA group		Группа A.Br.STI и A.Br.Tsiankovskii A.Br.STI and A.Br.Tsiankovskii group				
№ штамма No. strain	линии lineages	snp.cea, tºC	№ штамма No. strain	линии lineages	snp.sti, t°C	snp.tsian, t°C
I-45	A.Br.001/002	71,57	I-45	A.Br.001/002	69,91	70,90
1	A.Br.005/006	71,57	1	A.Br.005/006	69,91	70,99
81/1	A.Br.008/009	71,53	I-357	A.Br.Ames	70,00	70,99
I-19	A.Br.008/009	71,62	388/1	A.Br.Vollum	69,90	71,00
I-357	A.Br.Ames	71,48	140P	B.Br.001/002	69,90	70,90
388/1	A.Br.Vollum	71,48	I-29	B.Br.001/002	69,80	70,90
140P	B.Br.001/002	71,57	1368/1	B.Br.001/002	69,81	70,99
I-29	B.Br.001/002	71,53	312/163	A.Br.Aust94	69,80	70,80
1368/1	B.Br.001/002	71,47	81/1	A.Br.STI	69,90	71,60
312/163	A.Br.CEA	70,93	1CO	A.Br.STI	69,70	71,70
819/5	A.Br.CEA	71,03	363/17	A.Br.STI	69,80	71,60
73/42	A.Br.CEA	71,08	506/55	A.Br.STI	69,80	71,59
377/3	A.Br.CEA	70,97	I-9	A.Br.STI	70,09	71,71
456/13	A.Br.CEA	71,03	228/269	A.Br.STI	69,91	71,79
1180	A.Br.CEA	70,97	618/755	A.Br.Tsian.	70,51	70,89
1190	A.Br.CEA	71,13	1058/654	A.Br.Tsian.	70,59	70,90
1283	A.Br.CEA	71,07	I-19	A.Br.Tsian.	70,41	70,99
52/33	A.Br.CEA	71,07	I-275	A.Br.Tsian.	70,41	70,90
462/471	A.Br.CEA	71,17	I-323	A.Br.Tsian.	70,59	71,00
817/685	A.Br.CEA	71,17	1374/873	A.Br.Tsian.	70,51	70,99

Примечание. Выделены температуры пиков плавления, демонстрирующие специфические реакции при тестировании штаммов разных линий *B. anrthracis*.

Note. The melting peak temperatures are indicated in bold, demonstrating specific reactions when testing strains of different *B. anthracis* lineages.

Таблица 4. Результаты HRM-ПЦР-тестирования штаммов для локусов snp.sib, snp.eursib, snp.012

 Table 4. Results of HRM PCR testing of strains for loci snp.sib, snp.eursib, snp.012 loci

Группы тестирования B.Br.Siberia, B.Br.Eursib и B.Br.012 B.Br.Sib, B.Br.Eursib, and B.Br.012 testing group					
№ штамма No. strain	линии lineages	snp.sib, t °C	snp.eursib, t °C	snp.012, t °C	
I-45	A.Br.001/002	74,61	79,09	70,80	
81/1	A.Br.008/009	74,41	79,20	70,90	
312/163	A.Br.Aust94	74,51	79,21	71,09	
140P	B.Br.Europe	74,60	78,41	70,00	
12/16	B.Br.Europe	74,60	78,41	69,70	
850/46	B.Br.Europe	74,60	78,41	69,69	
I-373	B.Br.Europe	NA	78,51	69,81	
1342/12	B.Br.Siberia	73,81	78,50	69,80	
I-29	B.Br.Siberia	73,80	78,59	69,99	
1368/1	B.Br.Asia	74,60	79,21	69,70	
I-362	B.Br.Asia	74,71	79,30	69,71	
1284	B.Br.018	74,71	79,30	71,00	

Примечание. NA — штамм не тестировался. Жирным шрифтом указаны температуры пиков плавления, демонстрирующие специфические реакции при тестировании штаммов разных линий *B. anrthracis*.

Note. NA — strain not tested. The melting peak temperatures are indicated in bold, demonstrating specific reactions when testing strains of different *B. anthracis* lineages.

Рис. 2. Пики и кривые плавление штаммов A.Br.CEA, A.Br.STI и A.Br.Tsiankovskii для соответствующих локусов snp.cea, snp.sti, snp.tsian.

Fig. 2. Peaks and melting curves for strains from A.Br.CEA, A.Br.STI and A.Br.Tsiatkovskii clusters for the corresponding snp.cea, snp.sti, and sp.tsian loci.

Рис. 3. Пики и кривые плавления при анализе штаммов кластеров B.Br.Siberia, B.Br.Europe и B.Br.Siberia, B.Br.012 по соответствующим локусам snp.sib, snp.eursib и snp.012.

Fig. 3. Peaks and melting curves for strains from B.Br.Siberia, B.Br.Europe, and B.Br.012 clusters for the corresponding snp.sib, snp.eursib, and snp.012 loci.

Таблица 5. Набор нуклеотидов SNP для специфических субкластеров B. anrthracis

Table 5. Set of SNP nucleotides specific for different B. anrthracis subclusters

Субкластер Subcluster	Аллели маркерных SNP Alleles of marker SNPs					
	snp.cea	snp.sti	snp.tsian	snp.sib	snp.eursib	snp.012
A.Br.CEA	I	Т	A	G	С	С
A.Br.STI	С	<u>c</u>	А	G	С	С
A.Br.Tsiankovskii	С	т	<u>G</u>	G	С	С
B.Br.Siberia	С	т	А	A	A	A
B.Br.Europe	С	т	А	G	Δ	Α
B.Br.Asia	С	т	А	G	С	Α
B.Br.018	С	т	А	G	С	С

Примечание. Жирным шрифтом с подчеркиванием выделен специфический нуклеотид. **Note**. A specific nucleotide is highlighted in bold with an underscore.

Таблица 6. Пики плавления SNP-локусов

 Table 6. Melting peaks for SNP loci

Локус Locus	Нуклеотид Nucleotide	Пики температур плавления, ⁰С Melting temperature peaks, °C	Разница пиков температур плавления, °C Difference of melting temperature peaks, °C
snp.cea	I	71,06 ± 0,08	0,48
	С	$71,54 \pm 0,05$	
snp.sti	<u>C</u>	$70,43 \pm 0,07$	0,63
	Т	69,81 ± 0,08	
snp.tsian	<u>G</u>	$71,63 \pm 0,09$	0,76
	А	$70,88 \pm 0,07$	
snp.sib	Α	73,81 ± 0,01	0,79
	G	$74,59 \pm 0,09$	
snp.eursib	Α	$78,47 \pm 0,07$	0,74
	С	79,21 ± 0,08	
snp.012	A	69,80 ± 0,13	1,15
	С	70,95 ± 0,12	

Примечание. Жирным шрифтом с подчеркиванием выделен специфический нуклеотид.

Note. A specific nucleotide is highlighted in bold with an underscore.

а неспецифических — $69,81 \pm 0,08$ и $70,88 \pm 0,07^{\circ}$ С соответственно (**табл. 3, 6, рис. 2**). Локусы snp.012, snp.eursib, snp.sib демонстрировали температуру плавления для специфических аллелей, равную $69,80 \pm 0,13$, $78,47 \pm 0,07$ и $73,81 \pm 0,01^{\circ}$ С соответственно; для неспецифических — $70,95 \pm 0,12$, $79,21 \pm 0,08$ и $74,59 \pm 0,09^{\circ}$ С соответственно (**табл. 5, 6, рис. 3**).

Определённые генотипы методом HRM-ПЦР в 100% случаев совпадали с генотипами, определёнными в результате полногеномного секвенирования.

Следует отметить, что абсолютные значения кривых и пиков плавления зависят от используемого набора и параметров реакции, но разница в температурах остаётся относительно постоянной.

Ранее нами было показано, что к субкластеру A.Br.CEA canSNP-группы A.Br.Aust94 принадлежат штаммы *B. anthracis*, выделенные на территории Южного Кавказа и Турции, а также один штамм 73/42, выделенный на Северном Кавказе в Чечено-Ингушской АССР, что дало основание назвать этот субкластер А.Вг.СЕА (Caucasus-East Anatolia). Тогда же нами было выдвинуто предположение, что многие штаммы из коллекции патогенных микроорганизмов Ставропольского противочумного института Роспотребнадзора, выделенные на Кавказе, могут относиться к этому субкластеру [24]. В результате типирования разработанным методом установлено, что все штаммы из группы А.Вг. Aust94 принадлежали к субкластеру А.Вг.СЕА, что подтверждает распространение А.Вг.СЕА по территории Северного и Южного Кавказа.

Таким образом, выбраны маркерные SNP для определения генетических субкластеров A.Br. CEA, A.Br.STI, A.Br.Tsiankovskii, B.Br.Europe, B.Br. Siberia, B.Br.Asia, B.Br.018 и разработан новый лабораторный метод молекулярного субтипирования *В. anthracis* с использованием HRM-ПЦР. Использование этого метода молекулярного субтипирования в алгоритме мониторинга возбудителя сибирской язвы позволяет определить принадлежность изолятов *В. anthracis* к одному из наиболее распространённых и эпидемиологически значимых субкластеров до получения результатов полногеномного секвенирования и филогенетического анализа.

СПИСОК ИСТОЧНИКОВ | REFERENCES

- Pilo P., Frey J. *Bacillus anthracis:* molecular taxonomy, population genetics, phylogeny and patho-evolution. *Infect. Genet. Evol.* 2011;11(6):1218–24. DOI: https://doi.org/10.1016/j.meegid.2011.05.013
- Beyer W., Bellan S., Eberle G., et al. Distribution and molecular evolution of *Bacillus anthracis* genotypes in Namibia. *PLoS Negl. Trop. Dis.* 2012;6(3):e1534.

DOI: https://doi.org/10.1371/journal.pntd.0001534

- Stratilo C.W., Lewis C.T., Bryden L., et al. Single-nucleotide repeat analysis for subtyping *Bacillus anthracis* isolates. *J. Clin. Microbiol.* 2006;44(3):777–82. DOI: https://doi.org/10.1128/JCM.44.3.777-782.2006
- Van Ert M.N., Easterday W.R., Huynh L.Y., et al. Global genetic population structure of *Bacillus anthracis*. *PloS One*. 2007;2(5):e461.
 - DOI: https://doi.org/10.1371/journal.pone.0000461
- Pearson T., Busch J.D., Ravel J., et al. Phylogenetic discovery bias in *Bacillus anthracis* using single-nucleotide polymorphisms from whole-genome sequencing. *Proc. Natl Acad. Sci.* USA. 2004;101(37):13536–41.
 DOL: https://doi.org/10.1072/mms.0402844101
 - DOI: https://doi.org/10.1073/pnas.0403844101 Read T.D. Salzberg S.L. Pop M. et al. Compara
- Read T.D., Salzberg, S.L., Pop M., et al. Comparative genome sequencing for discovery of novel polymorphisms in *Bacillus anthracis. Science*. 2002;296(5575):2028–33. DOI: https://doi.org/10.1126/science.1071837
- Van Ert M.N., Easterday W.R., Simonson T.S., et al. Strain-specific single-nucleotide polymorphism assays for the *Bacillus anthracis* Ames strain. *J. Clin. Microbiol.* 2007;45(1):47–53. DOI: https://doi.org/10.1128/JCM.01233-06
- 8. Marston C.K., Allen C.A., Beaudry J., et al. Molecular epidemiology of anthrax cases associated with recreational use of animal hides and yarn in the United States. *PLoS One*. 2011;6(12):e28274.

DOI: https://doi.org/10.1371/journal.pone.0028274

- Kuroda M., Serizawa M., Okutani A., et al. Genome-wide single nucleotide polymorphism typing method for identification of *Bacillus anthracis* species and strains among *B. cereus* group species. *J. Clin. Microbiol.* 2010;48(8):2821–9. DOI: https://doi.org/10.1128/JCM.00137-10
- Price E.P., Seymour M.L., Sarovich D.S., et al. Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe. *Emerg. Infect. Dis.* 2012;18(8):1307. DOI: https://doi.org/10.3201/eid1808.111343
- Girault G., Blouin Y., Vergnaud G., Derzelle S. High-throughput sequencing of *Bacillus anthracis* in France: investigating genome diversity and population structure using whole-genome SNP discovery. *BMC Genomics*. 2014;15(1):288. DOI: https://doi.org/10.1186/1471-2164-15-288
- Girault G., Thierry S., Cherchame E., Derzelle S. Application of high-throughput sequencing: discovery of informative SNPs to subtype *Bacillus anthracis*. *Adv. Biosci. Biotech*. 2014;5(7):669– 77. DOI: https://doi.org/10.4236/abb.2014.57079

- Derzelle S., Aguilar-Bultet L., Frey J. Whole genome SNP analysis of bovine *B. anthracis* strains from Switzerland reflects strict regional separation of Simmental and Swiss Brown breeds in the past. *Vet. Microbiol.* 2016;196:1–8. DOI: https://doi.org/10.1016/j.vetmic.2016.10.014
- Khmaladze E., Birdsell D.N., Naumann A.A., et al. Phylogeography of *Bacillus anthracis* in the country of Georgia shows evidence of population structuring and is dissimilar to other regional genotypes. *PLoS One*. 2014;9(7):e102651. DOI: https://doi.org/10.1371/journal.pone.0102651
- 15. Sahin M., Buyuk F., Baillie L., et al. The identification of novel single nucleotide polymorphisms to assist in mapping the spread of *Bacillus anthracis* across the Southern Caucasus. *Sci. Rep.* 2018;8(1):11254.

DOI: https://doi.org/10.1038/s41598-018-29738-3

- Kenefic L.J., Pearson T., Okinaka R.T., et al. Pre-Columbian origins for North American anthrax. *PLoS One.* 2009;4(3):e4813. DOI: https://doi.org/10.1371/journal.pone.0004813
- 17. Derzelle S., Aguilar-Bultet L., Frey J. Comparative genomics of *Bacillus anthracis* from the wool industry highlights polymorphisms of lineage A. Br. Vollum. *Infect. Genet. Evol.* 2016;46:50–8.
 - DOI: https://doi.org/10.1016/j.meegid.2016.10.019
- Sahl J.W., Pearson T., Okinaka R., et al. A *Bacillus anthracis* genome sequence from the Sverdlovsk 1979 autopsy specimens. *mBio*. 2016;7(5):e01501-16. DOI: https://doi.org/10.1128/mBio.01501-16
- Navarro E., Serrano-Heras G., Castaño M.J., Solera J. Real-time PCR detection chemistry. *Clin. Chim. Acta*. 2015;439:231–50. DOI: https://doi.org/10.1016/j.cca.2014.10.017
- Johnson M.P., Haupt L.M., Griffiths L.R. Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. *Nucleic Acids Res.* 2004;32(6):e55.

DOI: https://doi.org/10.1093/nar/gnh046

Birdsell D.N., Pearson T., Price E.P., et al. Melt analysis of mismatch amplification mutation assays (Melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models. *PLoS One*. 2012;7(3):e32866.

DOI: https://doi.org/10.1371/journal.pone.0032866

- Tamburro M., Ripabelli G. High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: a comprehensive review of the literature. *Ann. Ig.* 2017;29(4):293–316. DOI: https://doi.org/10.7416/ai.2017.2153
- 23. Анисимова Е.А., Фахрутдинов Н.А., Миргазов Д.А. и др. Дифференциация штаммов Bacillus anthracis на основе SNP- и VNTR-полиморфизма геномов. Вавиловский журнал генетики и селекции. 2022;26(6):560–7. DOI: https://doi.org/10.18699/VJGB-22-68 EDN: https://www.elibrary.ru/epohdj
- Anisimova E.A., Fakhrutdinov N.A., Mirgazov D.A., et al. *Bacillus anthracis* strain differentiation based on SNP and VNTR loci. *Vavilov Journal of Genetics and Breeding*. 2022;26(6):560–7. DOI: https://doi.org/10.18699/VJGB-22-68
- Kwong J.C., McCallum N., Sintchenko V., Howden B.P. Whole genome sequencing in clinical and public health microbiology. *Pathology*. 2015;47(3):199–210. DOI: https://doi.org/10.1097/PAT.00000000000235
- Eremenko E., Pechkovskii G., Pisarenko S., et al. Phylogenetics of *Bacillus anthracis* isolates from Russia and bordering countries. *Infect. Genet. Evol.* 2021;92:104890. DOI: https://doi.org/10.1016/j.meegid.2021.104890

ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ

Информация об авторах

Печковский Григорий Александрович[™] — м.н.с. лаб. сибирской язвы Ставропольского противочумного института, Ставрополь, Россия, grigorii.pechkovskii@gmail.com, https://orcid.org/0000-0001-7033-9972

Еременко Евгений Иванович — д.м.н., проф., г.н.с. лаб. сибирской язвы Ставропольского противочумного института, Ставрополь. Россия. https://orcid.org/0000-0002-8163-1300

Рязанова Алла Геннадьевна — к.м.н., зав. лаб. сибирской язвы Ставропольского противочумного института, Ставрополь, Россия, https://orcid.org/0000-0002-5196-784X

Писаренко Сергей Владимирович — к.х.н., в.н.с. лаб. биохимии Ставропольского противочумного института, Ставрополь, Россия, https://orcid.org/0000-0001-6458-6790

Шапаков Николай Андреевич — м.н.с., лаб. биохимии Ставропольского противочумного института, Ставрополь, Россия, https://orcid.org/0000-0001-9152-4026

Аксенова Людмила Юрьевна — к.м.н., с.н.с. Ставропольского противочумного института, Ставрополь, Россия, https://orcid.org/0000-0002-7744-3112

Семенова Ольга Викторовна — к.б.н., н.с. лаб. сибирской язвы Ставропольского противочумного института, Ставрополь, Россия, https://orcid.org/0000-0003-0274-898X

Тимченко Людмила Дмитриевна — д.вет.н., проф., г.н.с. межкафедральной научно-образовательной лаборатории экспериментальной иммуноморфологии, иммунопатологии и иммунобиотехнологии Северо-Кавказского федерального университета, Ставрополь, Россия, https://orcid.org/0000-0003-2011-880X

Куличенко Александр Николаевич — академик РАН, д.м.н., проф., директор Ставропольского противочумного института, Ставрополь, Россия, https://orcid.org/0000-0002-9362-3949

Участие авторов. Все авторы внесли существенный вклад в проведение поисково-аналитической работы и подготовку статьи, прочли и одобрили финальную версию до публикации.

> Статья поступила в редакцию 24.11.2022; принята к публикации 30.01.2023; опубликована 28.04.2023

Information about the authors

Grigorii A. Pechkovskii[™] — junior researcher, Anthrax laboratory, Stavropol Plague Control Research Institute, Stavropol, Russia, grigorii.pechkovskii@gmail.com, https://orcid.org/0000-0001-7033-9972

Evgenv I. Eremenko - D. Sci. (Med.). Professor. principal researcher, Anthrax laboratory, Stavropol Plague Control Research Institute, Stavropol, Russia, https://orcid.org/0000-0002-8163-1300

Alla G. Ryazanova - Cand. Sci. (Med.), Head, Anthrax laboratory, Stavropol Plague Control Research Institute, Stavropol, Russia, https://orcid.org/0000-0002-5196-784X

Sergey V. Pisarenko - Cand. Sci. (Chem.), leading researcher, Laboratory of biochemistry, Stavropol Plague Control Research Institute, Stavropol, Russia, https://orcid.org/0000-0001-6458-6790

Nikolay A. Shapakov - junior researcher, Laboratory of biochemistry, Stavropol Plaque Control Research Institute, Stavropol, Russia, https://orcid.org/0000-0001-9152-4026

Lyudmila Yu. Aksenova - Cand. Sci. (Med.), senior researcher, Anthrax laboratory, Stavropol Plague Control Research Institute, Stavropol, Russia, https://orcid.org/0000-0002-7744-3112

Olga V. Semenova - Cand. Sci. (Biol.), researcher, Anthrax laboratory, Stavropol Plague Control Research Institute, Stavropol, Russia, https://orcid.org/0000-0003-0274-898X

Lyudmila D. Timchenko - D. Sci. (Vet.), Professor, principal researcher, Interdepartmental scientific and educational laboratory of experimental immunomorphology, immunopathology and immunobiotechnology, North-Caucasus Federal University, Stavropol, Russia, https://orcid.org/0000-0003-2011-880X

Alexandr N. Kulichenko - D. Sci. (Med.), Professor, academician of RAS, director, Stavropol Research Anti-Plague Institute, Stavropol, Russia, https://orcid.org/0000-0002-9362-3949

Author contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published.

> The article was submitted 24.11.2022: accepted for publication 30.01.2023; published 28.04.2023