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Abstract
Introduction. The COVID-19 pandemic has revealed a whole complex of problems related to mathematical 
modeling of the epidemic process and assessing the effect of preventive and anti-epidemic measures in modern 
complex societies. Along with this, the accumulation of significant factual data has spurred the active development 
of agent-based models, in which each agent (a hypothetical person) has a unique set of characteristics and 
interaction methods determined based on real sociological and demographic data.
Aim and objectives. Development and demonstration of the capabilities of the epidemiological agent-based 
model POEM platform (POpulation Epidemiological Model).
Materials and methods. The POEM platform is developed based on the source code of one of the most 
widely used agent-based models worldwide, Covasim, taking into account the demographic and organizational-
administrative conditions specific to the Russian Federation.
Results. Computational experiments have shown that due to individual variability in the dynamics of infection 
development and the specifics of disease registration, even mass events, while leading to an actual increase 
in the number of infected individuals, do not have a significant impact on the shape of the curve of registered 
disease incidence. It has been shown that intercity traffic flows at a level of 0.1% of the population per day have 
a minimal effect on the dynamics of the epidemic's development, while the effect of a 1% population outflow per 
day sharply reduces the effect of strict anti-epidemic measures implemented in only one particular city. Using 
the example of the Voronezh region, the transition from the Delta variant to Omicron in early 2022 was modeled, 
and a high degree of correlation was shown between the model dynamics and the actual ratio of virus variants 
observed.
Conclusion. The model is fully implemented within the Russian system on the server of the Research Institute for 
System Biology and Medicine of Rospotrebnadzor and can be used to conduct digital epidemiological experiments 
to predict the effectiveness of proposed anti-epidemic measures.

Keywords: agent-based modeling, computational epidemiology, epidemic process, anti-epidemic measures

Funding source. The work was supported by Rospotrebnadzor subsidy No. 141-02-2023-208.
Conflict of interest. The authors declare no apparent or potential conflicts of interest related to the publication of this 
article.
For citation: Popova A.Yu., Ayupova A.F., Govorun V.M., Gorbacheva A.A., Ilina E.N., Kachalov V.N., Kozov I.E., 
Klochkov K.A., Kutyrev V.V., Lukashev A.N., Manolov A.I., Maslova I.I., Samoilov A.E., Safronov V.A., Tsurkis V.I. 
POEM: POpulation Epidemiological Model for anti-epidemic measures efficiency prognosis in the Russian Federation. 
Journal of microbiology, epidemiology and immunobiology. 2025;102(5):515–529. 
DOI: https://doi.org/10.36233/0372-9311-760
EDN: https://www.elibrary.ru/DJJHPV

© Popova A.Yu., Ayupova A.F., Govorun V.M., Gorbacheva A.A., Ilina E.N., Kachalov V.N., Kozov I.E., Klochkov K.A., Kutyrev V.V., Lukashev A.N., Manolov A.I., 
Maslova I.I., Samoilov A.E., Safronov V.A., Tsurkis V.I., 2025



516 517JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY. 2025; 102(5) 
DOI: https://doi.org/10.36233/0372-9311-760

ORIGINAL RESEARCHES

Оригинальное исследование
https://doi.org/10.36233/0372-9311-760

ПОЭМА: ПОпуляционная Эпидемиологическая Модель 
Агентная для прогноза эффективности противоэпидемических 
мероприятий в Российской Федерации
Попова А.Ю.1, Аюпова А.Ф.2, Говорун В.М.2, Горбачёва А.А.2, Ильина Е.Н.2,  
Качалов В.Н.2,3, Козлов И.Е.2, Клочков К.А.2,3, Кутырев В.В.4, Лукашев А.Н.2,5,  
Манолов А.И.2, Маслова И.И.2, Самойлов А.Е.2 , Сафронов В.А.4, Цуркис В.И.2

1Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, Москва, Россия;
2Научно-исследовательский институт системной биологии и медицины, Москва, Россия;
3Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, 
Россия;
4Российский противочумный институт «Микроб», Саратов, Россия;
5Институт медицинской паразитологии, тропических и трансмиссивных заболеваний им. Е.И. Марциновского 
Первого Московского государственного медицинского университета имени И.М. Сеченова, Москва, Россия

Аннотация
Введение. Пандемия COVID-19 выявила целый комплекс проблем, связанных с математическим моде-
лированием эпидемического процесса и оценкой эффекта от проводимых профилактических и противо
эпидемических мероприятий в современном сложноорганизованном обществе. Вместе с этим накопление 
значительных массивов фактических данных дало импульс активному развитию агентных моделей, в ко-
торых каждый агент (условный человек) имеет уникальный набор характеристик и способов взаимодей-
ствия, определяемых на основе реальных социологических и демографических данных. 
Цели и задачи. Разработка и демонстрация возможностей эпидемиологической агентной модели  
ПОЭМА (ПОпуляционная Эпидемиологическая Модель Агентная).
Материалы и методы. Платформа ПОЭМА разработана на исходном коде одной из наиболее широко 
используемых во всем мире агентной модели Covasim с учетом демографических и организационно-ад-
министративных условий, характерных для Российской Федерации. 
Результаты. Вычислительные эксперименты показали, что из-за индивидуальной вариабельности в ди-
намике развития инфекции и особенностей регистрации заболеваемости даже массовые мероприятия 
хотя и приводят к фактическому увеличению числа инфицированных, но не оказывают существенного 
влияния на форму кривой регистрируемой заболеваемости. Показано, что транспортные потоки между го-
родами на уровне 0,1% населения в день оказывают минимальный эффект на динамику развития эпиде-
мии, в то время как эффект от перетока 1% населения в день резко снижает эффект от введения строгих 
противоэпидемических мероприятий, проводимых только в одном отдельно взятом городе. На примере 
Воронежской области проведено моделирование смены циркулирующего варианта SARS-CoV-2 с Дельта 
на Omicron в начале 2022 г. и показана высокая степень корреляции между модельной динамикой и на-
блюдаемым в реальности соотношением вариантов вируса.
Заключение. Модель реализована полностью в Российском контуре на сервере НИИ системной биологии 
и медицины Роспотребнадзора и может быть использована для проведения цифровых эпидемиологиче-
ских экспериментов с целью прогноза эффективности предполагаемых к проведению противоэпидемиче-
ских мероприятий.
Ключевые слова: агентное моделирование, вычислительная эпидемиология, эпидемический процесс, 
противоэпидемические меры
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Introduction
The COVID-19 pandemic has shown that socio-

economic factors are an objective constraint in imple-
menting the necessary set of anti-epidemic measures. 
Different countries have chosen different approaches to 
preventing the spread of the new coronavirus infection, 
in all cases justifying the validity of the decisions be-
ing made. Against this backdrop, the need for computa-
tional epidemiological models became evident, which 
would allow for the most objective assessment of the 
potential effect of individual anti-epidemic measures 
and correlate it with the socio-economic losses from 
the epidemic. Thus, the COVID-19 pandemic served as 
a catalyst for the development of methods for computer 
modeling of epidemics.

Computational models for studying the spread of 
infectious diseases can be divided into two main types: 
compartmental and agent-based. Compartment models 
appeared almost 100 years ago and were actively used 
due to the speed and ease of calculations. In the basic 
compartmental model (SIR – Susceptible, Infected, Re-
covered), all individuals are identical and can only be in 
three states. Although modifications to the SIR model 
have been described for analyzing additional parame-
ters, accounting for individual combinations of proper-
ties of the subjects within the population is practically 
non-existent. Agent-based models allow each virtual 
entity to be endowed with unique characteristics of any 
complexity. They are much more computationally ex-
pensive, but they allow for the creation of a digital envi-
ronment that most accurately reproduces the conditions 
of the epidemic process's development [1].

The complexity of development has led to the 
widespread practice of using ready-made open-source 
agent models, which are then customized by the user to 
solve a range of specific tasks. Among the main com-
putational approaches considered for creating artificial 
populations whose agents are humans, the FRED [2], 
AceMod and Covasim [3] platforms have gained the 
widest adoption in modeling respiratory infections.

The open-source platform Covasim stands out 
because it contains numerous built-in algorithms for 
modeling epidemic control measures and allows for 
modification of the software code to implement addi-
tional functionalities. It has been used to address a wide 
range of issues, such as determining the optimal testing 
strategy for asymptomatic carriers [4], modeling the 
circulation of different SARS-CoV-2 variants [5], the 
effect of lifting school closures [6] and the likelihood 
of a second wave [7] in the UK, developing pandemic 
control strategies [8, 9] and vaccination strategies [10] 
in Australia, and vaccination strategies in the USA [11] 
and Italy [12]. In most of these works, a model was 
used that was refined to take into account regional char-
acteristics and specific tasks.

The aim of the study is to develop an agent-based 
epidemiological model POEM (Population Epidemi-

ological Model) based on the Covasim platform for 
modeling epidemics, studying the influence of various 
factors on pathogen spread, as well as evaluating the 
effectiveness of anti-epidemic measures in an artificial 
population. The application of the developed computa-
tional tool was demonstrated in a series of digital ex-
periments, comparing it with observed epidemiological 
patterns. 

Materials and methods
The development was based on the open-source 

program Covasim, released under the Creative Com-
mons Attribution-ShareAlike 4.0 license and available 
on the GitHub server (github.com/institutefordisease-
modeling/covasim). APOEM, like Covasim, is imple-
mented in the programming languages Python and Ja-
vaScript.

Modeling two or more settlements  
and their interactions 

The simulation of 2 or more settlements was imple-
mented using parallel computing as follows: during the 
initialization phase, additional cells are created in each 
city for agents who may arrive in that city. Then each 
city is modeled in a separate computational thread. The 
main simulation includes three stages: adding agents 
who have arrived in the city, performing the main sim-
ulation step (one simulated day), and selecting agents 
who will leave the city in the next simulation step. For 
each displaced agent, the duration of their stay in anoth-
er city is chosen based on a Poisson distribution with a 
mean value of 14 days (this parameter can be changed 
by the user). An agent who has temporarily moved from 
one settlement to another only has random interactions, 
but their number increases by an average of 3 times (the 
coefficient can be changed by the user). The graphical 
interface has been enhanced with the ability to define 
one or more transportation flows (agent movement be-
tween settlements). The user specifies the origin and 
destination, as well as the proportion of agents moving 
daily. The graphical interface also allows you to view 
simulation results for individual locations in different 
tabs or compare them on a single graph. 

Modeling the conduct of mass gatherings
The simulation of mass gatherings is implemented 

as follows: the user inputs a table (through a graphical 
interface or by calling functions in Python) contain-
ing the date of each event, the number of participants 
and the number of such gatherings. To implement this 
module, a new contacts layer was added. This layer is 
dynamic, with contacts updated daily to simulate new 
events. An agent can only participate in one event per 
day.

In the first step, a list of people who will partic-
ipate in mass events is randomly determined. Next, 
participants break into groups for separate meetings.  
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For each group, contacts are randomly established so 
that each agent has an average of 9 connections, as litera-
ture suggests that even for large mass events, the average 
number of contacts lasting 15 minutes or more, during 
which the virus can be transmitted, is 9 [13]. The prob-
ability of infection transmission through contact at mass 
events is assumed to be the same as workplace contacts.

Functional extensions of the Covasim model 
implemented in the APOEM software platform
New variants of agent susceptibility distributions 

and their infectivity have been introduced. A variant has 
been implemented where agents have individual but 
identical values for susceptibility and infectivity for a 
given agent, with the aim of modeling the behavior of 
agents with high values for both indicators.  

Accounting for the time delay between receiving 
a positive test result and the date the information is 
submitted to state control bodies has been added. Each 
agent is assigned a delay in receiving test results (a ran-
dom number from a given distribution), which is added 
to the test date during the simulation.

To account for the socio-demographic characteris-
tics of the modeled regions of the Russian Federation, 
an additional module for configuring the artificial popu-
lation construction has been implemented. The module 
is implemented based on the open-source library Syn-
thPops (URL: https://github.com/InstituteforDisease-
Modeling/synthpops). The ability to upload the artifi-
cial population parameters in the Excel table format has 
been added to the interface. 

A set of pathogen parameters corresponding to 
the Omicron variant has been added based on liter-

ature data. The set of factors for modeling the Omi-
cron variant of the SARS-CoV-2 virus was selected 
based on a literature search in the PubMed and Goo-
gle Scholar databases using the following keywords: 
Omicron transmissibility, transmissibility of Omicron, 
symptomatic factor, critical factor of Omicron, severe 
factor of Omicron, death of Omicron, and recovery of 
asymptomatic Omicron. The search was conducted for 
articles published since 2021, and 45 publications were 
selected that presented the parameters necessary for the 
stochastic agent-based model. To calculate the average 
median value of these parameters, only studies with a 
sample size of at least 100 people were used. 

Computational experiments were conducted in 
two stages. The first stage involves using a web inter-
face, the results were evaluated under various scenarios 
without repetitions. During the second stage, to assess 
the variability of the results due to the stochastic nature 
of the model, the most informative scenarios were exe-
cuted 30 or 100 times (in different tasks) using a Python 
script. 

Results

Covasim Source Code Modifications

The creation of the Population Epidemiologi-
cal Model (POEM) is based on the open-source pro-
gramming environment Covasim, with modifications 
or additions of code to specific modules to implement 
new features, increase the amount of information, and 
localization (Table 1). 

1. Assigning susceptibility and infectivity to distri-
bution agents

Table 1. Comparison of Covasim and APOEM

Covasim POEM

The susceptibility of the agent to the pathogen is defined discretely 
based on age category

The susceptibility of the agent to the pathogen is defined according 
to the chosen distribution option 

The infectivity of an agent is determined by a distribution  
that is independent of the susceptibility

The infectivity of an agent can be defined in conjunction  
with the susceptibility to that agent

Modeling the spread of SARS-CoV-2 variants – Wuhan variant, 
Alpha, Beta, Gamma, Delta

The ability to model infection caused by the Omicron variant  
of SARS-CoV-2 has been introduced; there is also the possibility  

of creating a custom virus variant

The epidemic spread is modeled within a single synthetic population 
(a hypothetical city) that is created based on average European 

demographic and statistical data

The epidemic spread is modeled in parallel for multiple synthetic 
populations (hypothetical cities) with different set parameters.

Model cities are defined as independent of each other or connected 
by an interaction coefficient. It is possible to build model cities based 

on real demographic and statistical data

The ability to model anti-epidemic measures – quarantine,  
mask mandates, vaccination

The ability to model both one-time (single) and regular mass events 
has been added

Anti-epidemic measures are implemented simultaneously and with 
equal intensity in all institutions of the same type in the hypothetical 

city

There is the possibility of selectively closing individual schools  
and businesses when a certain percentage of diagnosed cases  

is reached (the epidemic threshold)

The results of the agent testing are reflected on the incidence graph 
on the day of testing

The test results are displayed on an incidence graph with a delay, 
calculated based on real data from Rospotrebnadzor (18 million 

records)

Basic programming skills are required for setup Parameter settings and advanced features for visualization  
in the web version
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The key parameters of the infectious process are 
the susceptibility of individuals to infection (innate and 
acquired immunity) and contagiousness – the ability of 
the pathogen to be transmitted from one individual to 
another. At the same time, contagiousness is considered 
a characteristic of the pathogen, as individual charac-
teristics of subjects are averaged at the population lev-
el. In the agent-based model, it is possible to define an 
individual agent's ability to spread the virus (e.g., due 
to a higher viral replication rate, behavioral character-
istics, severity of respiratory infection symptoms, or a 
reduced infectious dose). To describe this characteristic 
of the agent (subject), the term "infectiousness" will be 
used below.

The original Covasim code assumes that agents' 
susceptibility to the virus is rigidly tied to the agent's 
age (Table 2) [14]. However, the authors of Covasim 
note that the susceptibility characteristics they adopt-
ed contradict the results of another study, where sus-
ceptibility to infection did not change with age [15]. 
At the same time, it is evident that the susceptibility 
of agents should correspond to mathematical distribu-
tions commonly observed in biology, and other studies 
have investigated, for example, the spread of infection 
in a population using uniform, Gaussian, and bimodal 
Gaussian distributions [16]. 

Since the exact characteristics of the distribution 
of human susceptibility to SARS-CoV-2 and other re-
spiratory viruses are unknown, the possibility of apply-
ing the following normalized distributions was includ-
ed in the POEM model:

•	 age-stratified susceptibility distribution propo
sed in the base Covasim model;

•	 normal (independent of age);
•	 lognormal (independent of age);
•	 lognormal, sharply peaked with a thin tail 

(independent of age).
To ensure the comparability of the impact of the 

susceptibility distribution on infection spread parame-
ters, the sum of the conditional susceptibility of agents 
in the population (the area under the susceptibility dis-
tribution curve) in the APOEM model is a constant.

In the original Covasim code, the agent's suscepti-
bility characteristic is defined (Table 2), and infectious-
ness is determined by the probability of pathogen trans-
mission. However, during the spread of COVID-19, 
significant heterogeneity in the number of infections 
from a single patient has been described, with 80% of 
secondary infections being caused by 15% of patients 

[17]. It is also known that the variability in the amount 
of SARS-CoV-2 virus detected by PCR testing among 
different patients (and consequently, the possibility of 
virus transmission) varied by several orders of magni-
tude [18]. In the POEM model, the ability to establish a 
direct relationship between a subject's susceptibility to 
the virus and its infectiousness was introduced, or to set 
these parameters as independent, as there is evidence 
in the literature supporting both options. For example, 
the ability to become infected and maintain a high level 
of replication could theoretically be linked to the level 
of viral receptor expression [19]. On the other hand, it 
has been shown that some people produce significantly 
more microdroplets than others and may be more in-
fectious simply because of this [20], meaning that sus-
ceptibility and infectiousness may not be linked at the 
individual level.

2. Implementing a temporary delay in displaying 
test results

One of the drawbacks of the Covasim base code 
is the instantaneous availability of results from testing 
conducted on an artificial population of agents. Howev-
er, the actual registration of testing data in the overall 
statistics may be significantly delayed under the in-
creased strain on the healthcare system. The integration 
of realistic delay into the POEM model, as close as pos-
sible to the conditions for recording morbidity in Rus-
sia, was performed based on an analysis of records of 
over 18 million cases of COVID-19, for which the date 
of a positive sample collection was compared with the 
date the information was received by Rospotrebnadzor. 
The resulting distribution of the difference between 
these dates for each sample was used to determine 
the probability of receiving delayed data after testing  
(Table 3). 

3. Implementation of a block forming two or more 
settlements, with or without their interaction.

The COVID-19 pandemic has demonstrated that 
imposing isolation on a specific territory or settle-
ment cannot guaranty the prevention of the pathogen's 
spread. For national health policy formation, modeling 
an epidemic in a single region without considering its 
interconnectedness with other regions has limited val-
ue. In the original Covasim code, there is an option to 
model the importation of a fixed number of infected 
individuals into the simulated population (a specified 
number of agents become ill each day without a source 
of infection), while the outflow of infected agents is 
not provided for. This approach doesn't allow for the 

Тable 2. Age-specific coefficients of susceptibility to the SARS-CoV-2 virus, as defined in the original version of Covasim[14]

Parameter
Age, years

0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90+

Susceptibility*, % 0.34 0.67 1.00 1.00 1.00 1.00 1.00 1.24 1.47 1.47

Note. *The infection probability coefficient upon contact between agents, used as part of the formula that determines the probability of virus 
transmission with each contact.
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dynamics of the epidemic's development in related re-
gions to be taken into account. To overcome this limita-
tion, the ability to model multiple populations (cities) 
in parallel, with independent parameters for epidemic 
control measures and the possibility of regulating the 
movement of agents between them, was developed. 
In the absence of interaction between cities, each can 
be considered an independent epidemiological exper-
iment, allowing for a comparison of the effect of pop-
ulation characteristics or the nature of anti-epidemic 
measures. The interaction coefficient between cities is 
determined empirically as the percentage of the pop-
ulation travelling  between  cities each day, reflecting 
hypothetical transportation flows. 

4. Building a model artificial population based on 
real demographic and sociological data 

Modeling the epidemic process under conditions 
close to real societies is implemented in the APOEM 
model thru the ability to upload demographic and so-
ciological data for a specific locality or region. The 
data is provided by the user in the form of an electro
nic spreadsheet created according to a template and in-
cludes population size and its age distribution, house-
hold size distribution, educational institution sizes and 
the number of teachers and other staff working in them, 
the distribution of workforce sizes, and the employ-
ment rate.

As an example of implementing real data loading 
into the POEM software model, profiles for the fol-
lowing Russian regions have been created: Blagovesh-
chensk and the Amur region, Nizhny Novgorod and the 
Nizhny Novgorod region, Voronezh and the Voronezh 
region.

5. Modeling the spread of the Omicron variant 
In late November 2021, the WHO designated a 

new genetic variant of SARS-CoV-2 as a variant of 
concern (B.1.1.529), naming it Omicron [21]. At the 
time this SARS-CoV-2 variant emerged, it had several 
times more mutations in the spike protein than any oth-
er variant [22]. Thanks to these mutations, the Omicron 
variant of the virus binds more effectively to the host 
cell's ACE2 receptors compared to previous variants. 
Most neutralizing antibodies produced by vaccinated 
individuals or those who have recovered from other 
SARS-CoV-2 variants are ineffective against Omicron, 
but it is associated with milder symptoms and a higher 
proportion of asymptomatic carriers compared to other 
variants [23].

The degree of danger of a coronavirus variant 
depends on factors such as contagiousness, immune 

evasion, and the severity of the clinical course of the 
infection [24]. The basic reproduction number (R0) of 
the Omicron variant is 8.2 [25], which corresponds to 
a much more effective spread compared to earlier vi-
rus variants. In the original Covasim environment, the 
transmissibility of virus variants is implemented based 
on coefficients relative to the original Wuhan variant. 
In the POEM model, the probability of infection trans-
mission from agent to agent was set to 3.34 (relative to 
the Wuhan variant), calculated as the average obtained 
from the analysis of several publications. The probabil-
ity of symptomatic infection with the Omicron variant 
was established at 0.1 based on a multicenter retrospec-
tive observational study conducted in Shanghai [26]. 
The risk of hospitalization with the Omicron variant 
infection was 56% lower compared to the Delta variant 
[27], and the risk of severe illness was 2–3 times lower 
[28]. Based on a systematic review and meta-analysis 
of severity and clinical outcomes in people infected 
with the Omicron variant, an odds ratio of 0.46 for criti
cal illness compared to the Delta variant and an odds 
ratio of 0.39 for mortality were used. According to the 
literature, the incubation period (in the terminology of 
the Covasim platform, actually the latent period, the 
time from infection to the onset of viral shedding) for 
the Omicron variant is about 2–3 days, and the average 
duration of the asymptomatic period is 2.2 days [29].

The median duration of virus detection was 9 days 
(ranging from 7 days in asymptomatic cases to 10 days 
in severe cases) [30]. Acute symptoms in those infected 
with the Omicron variant were observed for a shorter 
period – an average of 6.9 days, compared to patients 
infected with Delta, who experienced symptoms for an 
average of 8.9 days [24]. The length of stay in intensive 
care units for Omicron variant infections was 5 days 
shorter than for Delta variant infections, with a medi-
an value of 5.3 days [31]. The overall mortality rate 
was higher for patients with the Delta variant, at 0.5%, 
compared to patients with the Omicron variant (0.1%). 
The average time from diagnosis to death when infect-
ed with the Delta variant was 13 days, compared to 10 
days with the Omicron variant [31]. 

Computational experiments
1. Mass gathering modeling
Mass gatherings have a significant impact on the 

dynamics of epidemics [32–34] and are one of the pri-
ority targets for epidemic control measures.

Two cities with a population of 100,000 agents 
have been given, with anti-epidemic measures in place 

Table 3. Distribution of the delay in reporting positive test results to Rospotrebnadzor, days after sample collection

Parameter
Delay, days

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Percentage, % < 1 14 22 12 10 9 7 6 5 4 3 2 2 2 2
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in the form of social distancing (reducing the frequency 
of random contacts by 50%, and contacts at school and 
work by 90%). On the first day in both cities, 30 people 
were infected with the Delta variant of SARS-CoV-2. 
The probabilities of testing asymptomatic and symp-
tomatic agents were 1% and 10%, respectively. Every 
10 days, mass events are held in one of the cities, with a 
total number of participants equal to 20,000. The results 
of 10 simulations for each city are presented in Fig. 1. 
The occurrence of mass events leads to a sharp increase 
in the number of infected individuals in the model. 
However, even a significant number of simultaneous 
infections (500–1000 compared to the usual 1000–2000 
infected per day) cannot be detected through daily test-
ing due to the smoothing of the incidence rate caused 
by the varying lengths of the incubation period and the 
uneven delay in reporting positive results, which ne-
gates sharp increases in infections.

2. Modeling of anti-epidemic measures
The most severe clinical course of COVID-19 

was observed in older individuals. The most intensive 
anti-epidemic measures were aimed at protecting the 
at-risk age group. One of the common measures to re-
duce morbidity was the closure of schools to decrease 
the spread of the virus in society and, consequently, the 
risk of household transmission to the elderly. Individual 
examples of the impact of school closures on reducing 
infections in the elderly have been described [35], but 
overall, epidemiological data do not confirm the effec-
tiveness of such measures with sufficient certainty, and 
the results of mathematical modeling described earlier 
have been contradictory [36, 37].

The following hypothetical scenarios were test-
ed on the POEM model. The most effective measures 
(100% isolation of all contacts) were applied only to 
young people (< 20 years old) or only to the elderly  
(> 60 years old) on days 30–90 or 60–120 after the start 
of the epidemic (at the time the measures were imple-
mented, approximately 1% or 20% of the population 
was infected, respectively), with the assumption that 
administrative resources allowed for restrictions to be 
in place for only 60 days.

When measures were implemented early, during 
low COVID-19 prevalence, there was a pronounced ef-
fect on the number of infected individuals. However, 
due to the lifting of restrictions on day 90, by day 140, 
the number of infected individuals in all groups was 
practically indistinguishable (Fig. 2). Meanwhile, iso-
lation of both young people and, especially, the elderly 
led to a 17% and 35% reduction in deaths, respectively, 
although the confidence intervals for these results par-
tially overlapped.

The late implementation of measures to isolate 
young people led to a 25% decrease in the number of 
cases, but the reduction in fatalities was less pronounced, 
at 16%. Late isolation of the elderly led to a smaller de-
crease in overall morbidity, but a significant reduction in 
mortality (66%). Thus, isolating young people may have 
an effect on the incidence of illness in the elderly, but less 
noticeable than the direct isolation of the elderly.

The modeling results obtained are consistent with 
the understanding that the later separation of organized 
children's and adolescent groups, implemented during 
the rise in COVID-19 incidence, is accompanied by an 

Fig. 1. The impact of holding mass gatherings on the number of SARS-CoV-2 infections in a city with a population  
of 100,000 agents.
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intensification of infection transmission within house-
holds due to longer and closer domestic contact (stu-
dents transferred to distance learning infect elderly in-
dividuals who are temporarily involved in supervising 
minors).

3. Passenger flow modeling 
During the COVID-19 pandemic, restrictions on 

movement between cities and countries were almost 
universal and aimed to prevent the virus from being 
brought into the region from areas with an unfavorable 
epidemiological situation. To model the effectiveness 
of traffic flow restrictions, a simulation of the epide
mic's spread was conducted in two cities. In both cities, 
anti-epidemic measures were implemented on the 50th 

day of the simulation (soft measures in the first city, 
strict ones in the second). On the 90th day of the simula-
tion, only mild epidemic control measures were imple-
mented in both cities, which continued until the end of 
the simulation. Soft epidemic control measures includ-
ed only mandatory mask-wearing at work and in public 
places with a conditional effectiveness of 25%, hard 
measures included mandatory mask-wearing at work 
and in public places with a conditional effectiveness of 
75%, and school closures. The spread of the epidemic 
was modeled under conditions of minimal transporta-
tion flows (0.01% of the population moving between 
cities daily), average flows (0.1% of the population dai-
ly, roughly corresponding to transportation flows be-
tween Moscow and St. Petersburg), and intensive flows 
(1% of the population daily).

In the city with mild measures, the number of 
cases reached 60,000 by day 200 (compared to 72,000 
without measures), and the number of deaths was 210 
compared to 275 (Fig. 3). With minimal traffic flow, the 
number of cases in the city with strict measures reached 

50,000 by the 200th day, and the number of deaths was 
130. With moderate traffic flow, the number of cases in 
the city with strict measures has barely changed, while 
the number of deaths has increased to 150. With heavy 
traffic flow, the effect of strict epidemic control mea-
sures in the second city was practically nullified. 

4. Modeling the introduction of measures when a 
threshold number of cases is reached

A classic tool in epidemiology is the implemen-
tation of anti-epidemic measures upon reaching a set 
level (epidemic threshold). This method is well-estab-
lished for influenza1. Since epidemic threshold values 
have not been developed for COVID-19, three fairly 
strict values were tested in the modeling: 20, 70 and 
150 cases per 10,000 population. At the same time, it 
was agreed that administrative resources are limited, 
and strict measures (mask mandate with 70% effective-
ness in public places and at work, school closures) will 
only be implemented for 30 days, followed by anoth-
er 30 days of less stringent measures (mask mandate 
with 30% effectiveness in public places, at work, and 
in schools). Epidemiological measures had an immedi-
ate effect on the pathogen transmission efficiency in the 
model population (reducing the effective reproductive 
number below 1). The total number of infected indivi
duals was 30–35 thousand in all scenarios, but the num-
ber of deaths in the case of the latest implementation of 
measures (when the total number of diagnosed cases 
reached 150 per 10 thousand population) reached 145, 

1	 State Sanitary and Epidemiological Rationing of the Russian 
Federation. 3.1.2. Respiratory tract infections. Methodology 
for calculating epidemic thresholds for influenza and acute 
respiratory viral infections in the subjects of the Russian 
Federation. Methodological recommendations. MP 3.1.2.0118-
17. Moscow; 2017.

Fig. 2. The impact of implementing anti-epidemic measures on morbidity and mortality across different age groups.
The blue line on the graph represents the results when young individuals were isolated, and the red line represents the results when elderly 

individuals were isolated. The green line represents epidemic modeling in the city without the implementation of measures.
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while in all other scenarios the values were in the range 
of 91–111 people (Fig. 4). Thus, the POEM model al-
lows for simulating the development of an epidemic 
under the conditions of the response standards adopted 
in Russia for disease spread, and accounting for regis-
tration delays based on real data allows for planning the 
fight against the spread of infection, taking this factor 
into account. 

5. Modeling the circulation of two virus variants
The Voronezh region was chosen as a model, 

because a sufficiently large number of SARS-CoV-2 
virus whole-genome sequences were available on the 
VGARus platform in December 2021 – January 2022, 
allowing for a comparison of the calculated ratio of vi-
rus variants in the simulation and the actually observed 
one. Demographic data was loaded into the model, and 
based on this, a digital replica of the Voronezh region 
was created. On April 1, 2021, 30 agents infected with 
the Delta variant appeared in it, and on December 15, 
2021, 30 agents infected with the Omicron variant ap-
peared. This simulation was repeated 100 times, and the 
results are presented in Fig. 5. The Pearson correlation 
coefficient between the average result from 100 simula-
tions and the real data for the proportion of the Omicron 
variant among circulating SARS-CoV-2 in the popula-
tion was 0.9985.

Discussion
Computational epidemiology is a new field of 

knowledge that combines the principles of classical 
epidemiology, statistics, mathematics and computer 
science to analyze large datasets, model the spread of 
diseases in the human population, and inform public 
health policy.

A successful example of implementing this ap-
proach is the Baroyan–Rvačev model for predicting 
influenza epidemics in the USSR [38]. The model 
used detailed data on intercity migration flows, which 
allowed for highly accurate predictions of the start of 
the epidemic process and its peak in the capitals of the 
union republics.

The rapid development of computational technol-
ogies in the late 20th and early 21st centuries allowed 
for the transition to large-scale agent-based modeling 
with explicit interactions between individuals to simu-
late the spread of infectious diseases. The development 
of such approaches allows for a number of fundamen-
tal features to be taken into account: the diversity of 
agents (e.g., age, gender, social status, etc.), the hete
rogeneity of social contacts, migration flows, the im-
plementation of disease control measures for specific 
population groups, etc. The COVID-19 pandemic fully 
demonstrated the need to utilize the predictive power of 
stochastic discrete models for conducting computation-
al epidemiological experiments to select the optimal set 
of response measures. 

The Covasim agent-based modeling platform, com-
bined with the SynthPops synthetic population creation 
module, is currently one of the most advanced in epide-
miology. Over the past 3 years, a significant amount of 
research has been conducted using Covasim to develop 
measures to prevent the spread of epidemics, such as:

•	 studying test strategies and impact of test 
characteristics [4, 9, 39];

•	 studying the effectiveness of isolation and 
quarantine [6, 39];

•	 modeling the achievement of herd immunity 
[10];

Fig. 3. The impact of intercity traffic flows on morbidity and mortality at different levels of implementation of anti-epidemic 
measures.

The blue line on the graph shows the simulation results for the city with the most effective measures, and the red line shows the results for the 
city with less strict measures. The green line shows modeling an epidemic in the city without the implementation of measures and with  

no transportation. Dotted lines show the dates of the implementation and cancelation of measures and the end of the simulation.
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•	 analysis of vaccination strategies [6, 11, 12];
•	 assessing the risks of the consequences of 

rescinding management decisions [8, 40]. 
In certain cases, the objectives were achieved by 

expanding, calibrating, or modifying the Covasim mo
del. The most extensive additions were proposed in the 
new ProMES model based on Covasim [41].

This study presents the POEM model, which 
overcomes the limitations associated with using the 
Covasim platform for the population of various re-
gions of the Russian Federation and adds a number 
of new features that allow for computational experi-
ments with greater detail and reliability than provided 
by the original code.

Agent susceptibility profiles to SARS-CoV-2 have 
been developed, reflecting the latest accumulated data, 
which differ from the results of early COVID-19 stu
dies. A population structure based on real demographic 
data and a correct registration delay based on an ana
lysis of 18 million COVID-19 cases have been imple-

mented. The ability to assess the role of mass gather-
ings and traffic flows has been added, and based on a 
meta-analysis of published data, the ability to simulate 
Omicron variant morbidity has been added. The web 
interface for running simulations and visualizing results 
makes it possible for users without programming skills 
to work with the POEM software platform. For scien-
tific research, it is possible to run multiple simulations 
with statistical significance assessment and output of 
results not only in graphical format but also as the raw 
values of all parameters.

Digital epidemiological experiments performed to 
demonstrate the model capabilities show that the mo
del corresponds to the actually observed development 
of epidemics and the effect of anti-epidemic measures. 
At the same time, the model allows for practicing not 
only standard but also extreme scenarios, such as the 
emergence of highly contagious pathogens. Since the 
key constraint during the COVID-19 pandemic was 
public acceptance of restrictions, using the APOEM 

Fig. 4. The impact of implementing epidemic control measures upon reaching the threshold of registered cases on incidence 
and mortality.

The blue line on the graph shows the simulation results when measures are implemented upon reaching a threshold of 20 diagnosed cases, 
the red line shows the results when the threshold is 70, the green line shows the results when the threshold is 150 diagnosed cases,  

and the purple line represents the modeling of the epidemic in the city without the implementation of measures.
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platform makes it possible to select the most effective 
measures, taking into account limited administrative 
resources. The Covasim model was developed with a 
focus on performance, ease of use and flexibility: re-
alistic scenarios can be run on a standard laptop in less 
than a minute [3]. In the POEM system, modeling an 
epidemic in a population of 100,000 people over 180 
days and generating all the graphs takes 30 seconds 

on a single-core processor. Simulating a population of  
1 million people over 180 days takes 6 minutes.

The limitation of the POEM platform is the lack 
of epidemic development prediction functions. There 
are studies where this possibility is implemented by 
dynamically adjusting the virus transmission efficien-
cy based on current morbidity data. This approach can 
be quite effective for short-term (around 2 weeks) dis-

Fig. 5. Simulation of the dominant SARS-CoV-2 variant change in the Voronezh region in the winter of 2021–2022. 
a — graph of the daily number of infected individuals, broken down by SARS-CoV-2 variant. The Delta variant is marked in green, and the 

Omicron variant is marked in red. The daily number of infections in 100 simulations is shown in pale colors, and the average values are 
shown in bright colors;

b — the proportion of the Omicron variant among the SARS-CoV-2 circulating in the Voronezh region. The values calculated from the results 
of 100 simulations are shown in light blue, the average value is in dark blue, and the real data from the whole-genome sequencing analysis 

results are in red.
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ease prediction, but the primary goal of this work was 
to reproduce the population and epidemic spread in as 
much detail as possible to develop epidemic control 
strategies. Dynamically adjusting the model is an easy 
way to compensate for model imperfections, but it can 
reduce its value as a planning tool. 

Conclusion
POEM is the first platform in Russia for agent-

based modeling of epidemics, which is expected to be 
accessible to a wide range of professional epidemiol-
ogists in the future. The model flexibility allows for 
virtually unlimited scaling of the platform by adding 
regions and traffic flows based on demographic and sta-
tistical data, defining new variants of the coronavirus 
and other pathogens. The model is fully implement-
ed within the Russian framework on the server of the 
Research Institute of System Biology and Medicine of 
Rospotrebnadzor and can be used to conduct digital ep-
idemiological experiments to predict the effectiveness 
of anti-epidemic measures in the Russian Federation.
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