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Abstract

The aim of this review is to characterize the possibilities of using organoid (3D-cell) cultures to assess the ability
of viruses for cross-species transmission.

Sources from Web of Science, PubMed, Scopus, Elsevier, Google Scholar, and eLIBRARY.RU databases as of
February 2025 were used.

In addition to classical methods of epidemiologic diagnostics and surveillance of viral infections, molecular genetic
technologies (polymerase chain reaction and sequencing) are widely used in the epidemiologic surveillance
system. As the best world experience shows, the use of organoid (3D-cell) cultures is promising in addressing
these issues. This review analyzes data on the use of organoid (3D-cell) cultures of human and animal origin to
study immunopathogenesis, as well as to assess the ability of a number of viruses (SARS-CoV-2, influenza, Zika,
measles, etc.) for cross-species transmission, which determines their pandemic potential
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AHHOMauus
Llenb o63opa — oxapakTepu3oBaTb BO3MOXHOCTU MPUMEHEHUSA OpraHoMaHbIX (3D-KNeTouvHbIX) KynbTyp Ans
OLIEHKM CMOCOBHOCTM BUPYCOB K MEXBMAOBLIM Nepexoaam.
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OPUTVHANbHbBIE NCCJTIEAOBAHNA

Mcnonb3oBaHbl ucTouHMkM n3 6a3 gaHHbix Web of Science, PubMed, Scopus, Elsevier, Google Scholar
n eLIBRARY.RU no coctosiHuntio Ha cheBpanb 2025 T.

B pabote cucteMbl 3anMaemMmonornyeckoro Hagsopa, MOMUMO KIacCUYECKMX METOAOB 3NMAEMUONOrMYeckomn
OVMarHoCTUKN U HaA30pa 3a BMPYCHBIMU UHAEKLMSIMU, LUIMPOKO NMPUMEHSIIOTCSI MONEKYNAPHO-reHETUYeCcKkne Tex-
Homornu (nonumepasHas LenHasi peakums U cekBeHupoBaHue). Kak nokasbiBaeT nepefoBOl MUPOBOW ONMbIT,
B peLleHun 3TUX BONPOCOB MEPCMNEKTUBHBIM ABMAETCSH UCMONb30BaHNe opraHonaHbIX (3D-KNeToYHbIX) KynbTyp.
B HacToswem 0630pe npoaHann3mMpoBaHbl AaHHbIE N0 NPUMEHEHNIO OpraHoMAHbIX (3D-KNEeTOYHbIX) KynbTyp Ye-
FIOBEYECKOrO U XMBOTHOMO MPOUCXOXAEHUSI ANS U3YyYeHUss MMMYyHONaToreHesa, a Takke OLEHKM CnocobHoCTU
psaa BupycoB (SARS-CoV-2, rpunna, 3uka, kopu 1 Ap.) K MEXBMAOBBLIM nepexodam, YTo obycroBnMBaeT MX
naHAeMWYECKMIn NoTeHumann.

KnroueBble cnoBa: 0630p, opeaHoudHble (3D-KrnemoyHbie) Kyrbmypbl, 8UPYChI, Mexaudosbie nepexodsbl, 3ru-

demuorioeusi

HNcmoyHuk puHaHcupoeaHusi. ABTOpPbI 3asBNSAOT 06 OTCYTCTBMM BHELUHEro (PUHAHCMPOBAHUS NpW NPOBEAEHUU
nccneposaHus. Pabota BeinonHeHa B pamkax [ocyaapcteeHHoro 3agaHus HUM snuaemuonorum n myukpobuonorum
um. I.I. Comosa PocnoTtpebHaasopa Ne 141-00089-21-00 Ha 2021-2025 rr.
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Introduction

In order to successfully carry out the tasks that
ensure sanitary and epidemiological well-being of the
population, the activities of the Russian network of
specialized institutions in the field of epidemiological
surveillance must be improved upon, which involves a
system of comprehensive surveillance of the epidemic
process of a particular disease in dynamics in a certain
territory in order to improve the effectiveness of pre-
ventive and anti-epidemic measures [1].

The COVID-19 pandemic, etiologically associ-
ated with SARS-CoV-2 (severe acute respiratory syn-
drome coronavirus type 2) (Nidovirales: Coronaviri-
dae, Betacoronavirus, Sarbecovirus subgenus), on the
one hand, demonstrated the predictive capabilities of
epidemiologic methods (local specialists had warned
about the pandemic potential of coronaviruses sever-
al years before the pandemic [2-4]), and on the other
hand, contributed to the formation of new approaches,
the main one being genomic epidemiologic surveillance
[5]. Genomic epidemiologic surveillance is currently
one of the main elements of the large federal project
“Sanitary Shield — Safety for Health (Prevention, De-
tection, Response)”, which Rospotrebnadzor is imple-
menting in the territory of the Russian Federation [6].
This project includes the construction of a network of
diagnostic PCR laboratories and Sequencing Centers
equipped with modern highly efficient NGS sequencers
[5, 7]. The obtained data are aggregated by the Russian
genetic data platform VGARus [5]. However, along
with molecular genetic methods of research, classical
methods of epidemiologic surveillance in the field of
virology, in particular cell culture approaches, also con-
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tinue to be actively developed [8, 9]. At the same time,
3D-cell cultures have been utilized in response to cur-
rent necessities and opportunities.

The ability of viruses for cross-species transmis-
sion is responsible for the pandemic potential of viruses
[10-12]. Most pandemics are associated with viruses,
which may include unidentified and potentially danger-
ous viruses capable of rapid evolution and transmission
from one host organism to another. The emergence of
new potentially dangerous viruses may be caused by
climate change and the melting of polar glaciers, urban-
ization and wildlife trade. Due to the possibility of new
epidemic outbreaks of viral diseases caused by new or
mutating viruses that pose significant threats to public
health, it is necessary to plan adequate preventive and
anti-epidemic measures. These include the develop-
ment of new experimental models for studying viruses.
Predicting the ability of viruses for cross-species trans-
mission also requires new experimental models.

The aim of this review is to characterize the cur-
rent possibilities of using organoid (3D-cell) cultures
to assess the ability of viruses for cross-species trans-
mission.

The analysis included scientific literature present-
ed in the main databases (Web of Science, PubMed,
Scopus, Elsevier, Google Scholar and eLIBRARY.RU)
as of February 2025.

Application of organoid (3D-cell) cultures
in virology
The method of organoid (3D-cell) cultures has
found wide application in virology for culturing and
studying the reproduction of human and animal virus-
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es, studying the mechanisms of immunopathogenesis,
developing and testing antiviral drugs and vaccines
[13—15]. A relatively new aspect of the use of organ
cultures is the solution of several issues related to
epidemiologic surveillance and monitoring for viral
infections. In particular, organoid (3D-cell) cultures
are used to assess the ability of viruses for cross-spe-
cies transmission, which accounts for their pandemic
potential.

Organoids and their variant, spheroids, are related
to 3D-cell cultures. There is no single definition of or-
ganoids, but their integral characteristics are multicel-
lularity, ability to self-organize and perform any phys-
iological functions of an organ. Spheroids are 3D-cell
cultures that form sphere-like formations during proli-
feration, which allows cells to grow and differentiate in
several directions.

Organoids are obtained from pluripotent stem
cells, including induced pluripotent stem cells and em-
bryonic stem cells, as well as from differentiated cells
or tumor tissue cells [16=18]. Protocols for obtaining
organoids according to the method are divided into two
large groups:

* various modifications of Lancaster's (2014)
method [19], differing in terms of cultivation
time and the use of differentiation inducers
followed by aging in microtubes or plates [20];

* use of bioreactors or mini-bioreactors [21].

One of the approaches to creating 3D-cell models
is a cell line grown on a three-dimensional gel frame-
work, as well as a spheroid culture or an organotypic
(organ) culture obtained directly by fragmenting an
organ and its subsequent cultivation [18]. 3D-cell cul-
tures occupy a more advantageous position compared
to 2D-cell cultures and in vivo models, as they allow
to reproduce the structure of real organs, control sig-
naling pathways and edit cell genomes in an environ-
ment resembling an organism, but are deprived of a
number of disadvantages of living systems. The dif-
ferent cell morphology in 2D-cell culture from native
cells negatively affects cellular processes including
proliferation, differentiation, apoptosis, gene expres-
sion. Furthermore, these cultures are tumorigenic, ge-
netically unstable, and do not reproduce the complex
intercellular interactions required to model viral infec-
tions [8, 9, 22].

The advantage of 3D-cell systems, and organoids
in particular, over cell lines is the reproducibility of cell
layers and tissue structure present in organs. Organoids
can be cultured for longer periods, frozen and used to
study physiological phenomena more realistically than
is possible with cell lines. Although organoid cultures
are expensive and difficult to replicate the scale of mas-
sive cell line culture systems, technologies to construct
them are rapidly advancing [13-15, 23].

The structure of organoids enhances viral tropism
to tissues and increases the likelihood of viral infection
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[14, 23]. Human organoids have become an important
tool in the field of viral infections research, and have
played a major role in their modeling and investigation
of the molecular mechanisms underlying their patho-
genesis. Only organoid systems allow us to study the
actual virus-host interaction, pathogenesis of infection,
treatment and prevention issues. Organoids also repre-
sent an indispensable model for cross-species testing of
new viruses [14, 23, 24], as discussed below. However,
in terms of virology, the use of organoids in Russia is
still in its early stages.

As noted by several authors, there is an urgent ne-
cessity to use more advanced biological systems for the
study of viral infections, including the assessment of
the cross-species potential of anthropozoonotic viruses
[12,25].

Application of human organoid cultures to study the
ability of viruses to overcome the cross-species barrier

Virus-host interactions are the main driving force
behind virus evolution. The ecology of a virus can only
be understood through the ecology of its actual and po-
tential hosts [26]. Natural focal pathogens of infectious
diseases are co-evolved with natural biocenoses and
can circulate without human involvement [27]. If a per-
son finds himself in the territory of a natural focus, they
may become an accidental host of the pathogen, and in
some cases an anthroponotic chain of its transmission
may be formed [28].

A key element of the ecological plasticity of natu-
ral focal viruses is their ability to overcome cross-spe-
cies barriers. This ability is most pronounced in arbovi-
ruses, which are transmitted to vertebrates by arthropod
vectors [26, 28]. The ecological group of arboviruses
includes, in particular, Zika virus (Amarillovirales:
Flaviviridae, Flavivirus), which causes sporadic mor-
bidity in Africa and Asia, and in 2015 entered South
America [29]. Brain organoids have been used to study
the immunopathogenesis of Zika fever and routes of
transmission of this virus, as it is associated with an
increased risk of neurological complications in adults
and children, and also causes brain malformations in
fetuses of infected pregnant women [30]. Organoid cul-
tures are actively used to study infection pathways and
mechanisms of cross-species transmission for other ar-
boviruses: Chikungunya (Martellivirales: Togaviridae,
Alphavirus), Japanese encephalitis (Amarillovirales:
Flaviviridae, Flavivirus), Powassan (Amarillovirales:
Flaviviridae, Flavivirus); Dengue (Amarillovirales:
Flaviviridae, Flavivirus) [14, 31].

An example of the use of organoids as a suitable
model for cross-species virological studies is the dis-
covery and characterization of CD46 cellular receptors
for measles virus (Mononegavirales: Paramyxoviridae,
Morbillivirus). Using a model of human respiratory
system organoids, it was found that vaccine and labora-
tory adapted strains of this virus use CD46 (an adhesion
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molecule expressed by human nuclear cells that acts as
a costimulatory factor for T-lymphocytes) as a receptor,
whereas vaccine and clinical wild-type strains are inca-
pable of using CD46 [32]. Then, another receptor for
adhesion of wild-type measles virus strains, nectin-4
(nectin-4) or PVRL4 (poliovirus receptor-related 4), in-
tensively expressed on the basolateral side of epithelial
cells, was identified [33]. This discovery led to a new
paradigm on how measles virus enters the respiratory
tract and leaves the host, with implications for the de-
velopment of preventive measures.

As for contact-transmitted viruses, the threshold
for entry into the human population is lower for great
ape viruses (Primates: Hominidae). Human immunode-
ficiency virus types 1 and 2 once evolved from monkey
immunodeficiency virus (Ortervirales: Retroviridae,
Lentivirus) [28], and the tissue tropism of these virus-
es is being actively studied on organoid cultures [34].
Monkeypox virus (Chitovirales: Poxviridae, Orthopox-
virus), which is of great concern to epidemiologists, is
capable of easy transmission from primates to humans
and causing epidemic outbreaks [28]. Y. Watanabe et
al. (2023) used models of colon organoids and human
keratinocytes derived from pluripotent cells to study
the replication dynamics of this virus in the respective
tissues; it was shown that the virus accumulated most
intensively in keratinocytes, whose dysfunction was
associated with significant mitochondrial damage [35].
The more unique the primary host of the virus is (not
only genetically but also physiologically), the more dif-
ficult it is for the virus to overcome the cross-species
barrier. Especially interesting in this respect are bats
(Chiroptera), whose physiology and parasite (includ-
ing virome) are very specific [36]. Bats are considered
a natural reservoir for a variety of viruses, including
SARS-CoV-2, Ebola virus and possibly others. In most
cases, bat-borne viruses require an intermediate host
for effective entry into the human population. The most
famous exception to this rule is the rabies-causing ly-
ssaviruses (Mononegavirales: Rhabdoviridae, Lyssavi-
rus), which easily overcome cross-species barriers due
to the versatility of the nicotinic acetylcholine receptor
of nerve endings used for entry of these viruses into
the target cell [28]. For this reason, organoids of the
nervous system are convenient and widely used 3D-cell
models to study infection pathways and mechanisms of
lyssavirus cross-species transmissions [37]. For Ebo-
laviruses (Mononegavirales: Filoviridae, Ebolavirus)
and Marburgviruses (Mononegavirales: Filoviridae,
Marburgvirus) associated with hemorrhagic fevers,
primates act as facultative (in some cases, direct trans-
mission of the pathogen to humans from mammals is
also possible) intermediate hosts, which have long been
considered a natural reservoir of filoviruses [38]. In this
case, organoids of blood vessels were effective in es-
tablishing the specific features of the pathogenesis of
infection [39].

For SARS-CoV!, which caused a major epidem-
ic in China in 2002-2003 [3], the intermediate host
was Himalayan civets (Paguma larvata) [40]; for
MERS-CoV (Middle East respiratory syndrome coro-
navirus), which caused a series of epidemic outbreaks
in the Arabian Peninsula and many imported cases
worldwide [3], the intermediate host was one-humped
dromedary camels (Camelus dromedarius) [40];
for pandemic SARS-CoV-2, pangolins (Pholidota),
which are widely found in Southeast Asian markets
because their derivatives are used in Oriental medi-
cine and their meat is considered a delicacy [40, 41].
The significant epidemic potential of bat-borne coro-
naviruses [40] necessitates the development of organ-
oid models to study the cross-species transmission of
these viruses.

Given that influenza, Ebola, Zika and pandemic
coronavirus (SARS-CoV-2) viruses have demonstrated
significant public health threats, organoid cultures have
found applications in better understanding the mecha-
nisms of pathogenesis and routes of infection in these
infections.

In parallel with the widespread implementation
of genomic surveillance, the COVID-19 pandemic
has stimulated the implementation of 3D-cell models
to study the pathogen of this disease, in particular, or-
ganoid cultures of human lungs, bronchi and tonsils,
liver and intestines, kidneys and blood vessels [42].
COVID-19 has been shown to be a vascular disease
and cause direct damage to the endothelium [43]. The
neuroinvasive potential of SARS-CoV-2 has been in-
vestigated on brain organoids [44]. The use of human
intestinal enteroids in which sustained replication of
SARS-CoV-2 was maintained, along with the detection
of viral RNA in fecal samples and the development of
gastrointestinal symptoms in some COVID-19 patients,
confirmed that the gastrointestinal tract may serve as
one of the routes of SARS-CoV-2 transmission in ad-
dition to airborne transmission [45]. The use of an or-
ganoid model of the human upper respiratory tract and
lungs to culture SARS-CoV-2 has shown that this rel-
evant and reliable model for coronavirus research has
additional value for testing other respiratory viruses,
studying immunopathogenesis, and developing thera-
peutic and preventive measures [42].

One of the most studied examples of a virus over-
coming cross-species barriers is the influenza A virus
(Articulavirales: Orthomyxoviridae, Alphainfluenzavi-
rus), whose natural reservoir is birds of the aquatic-eco-
logical complex, primarily geese (Anseriformes) and
plovers (Charadriiformes) [26-28]. All variants of this
virus circulating among mammals, including epidem-
ic [46] and pandemic [47] variants, have precursors in
wild bird populations.

' Due to the emergence of SARS-CoV-2, it is now acceptable to
refer to SARS-CoV as SARS-CoV-1
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Brain organoids have been used to study the path-
ways of infection during infection caused by influenza
A virus subtypes HIN1, H3N2, H7N1, and H5N1 [14,
48]. Organoids of the human respiratory tract with cili-
ated epithelium have also been used to study the multi-
plication ability of influenza viruses and other respira-
tory infections [48, 49]. For example, bronchial organ-
oids have been used to culture influenza viruses of types
A (Alphainfluenzavirus), B (Betainfluenzavirus), and C
(Gammainfluenzavirus) [50]; lung organoids have been
used to culture parainfluenza viruses (Mononegavi-
rales: Paramyxoviridae) of types 1, 3 (Respirovirus),
2, 4 (Rubulavirus) [48]. Human respiratory tract or-
ganoids containing the main types of epithelial cells
of the respiratory tract have shown different degrees of
infectivity of human and avian strains in influenza A
modeling. This relates to virus multiplication, tropism
to tissues and cytokine production on these strains [51].

Using organoid models of the respiratory tract,
the receptor-binding site of hemagglutinin of strains
adapted to birds was studied. It was found that this site
has a high affinity for a2'-3'-sialosides, while epidemic
strains have affinity for 02'-6'-sialosides; pigs (Suidae)
contain cells with both of these types of sialosides, so
natural adaptation of avian variants of the virus to hu-
man receptor specificity may occur in their organism
[26, 28, 52]. The situation is complicated by the fact
that the cells of the columnar epithelium in the up-
per parts of the human respiratory tract carry mainly
a2'-6'-sialosides on their surface, and in the lower parts,
they carry 02'-3'-sialosides. Therefore, during infection
of each individual human organism, a gradual positive
selection of viral variants with a2'-3'-specificity of the
hemagglutinin receptor-binding site is possible as the
infection passes from the upper respiratory tract to the
bronchioles, which contributes to the development of
severe (up to lethal) primary viral pneumonias [53]. In
this regard, the development of organoid (3D-cell mod-
els) to study the drift of receptor specificity of influenza
A virus depending on the conditions of its interaction
with cells is important not only in the context of virus
adaptation to the human body and to study the issues
of overcoming the cross-species barrier by viruses, but
also to predict the clinical consequences of the devel-
opment of infection.

Animal organoid cultures in the study of viruses
overcoming the cross-species barrier

According to various estimates, of the 1,500
known infectious diseases in the world, 60% are of an-
imal origin, with about 75% of new infectious diseases
being zoonotic in nature, and 25% of zoonoses occur-
ring in domestic animals. Viruses are etiologic agents
of zoonoses in about 30% of cases. Zoonotic viral in-
fections in animals are direct evidence of the ability of
viruses to overcome cross-species barriers and infect
humans [41, 54, 55].

ORIGINAL RESEARCHES

The use of animal organoids for modeling zoonotic
infections opens prospects for the study of host-patho-
gen interactions in zoonotic viral infections [41, 56,
57]. In this aspect, in addition to molecular genetic
methods, cross-species organoid cultures based on hu-
man and animal cells are of considerable interest for
scientifically justified prediction of the emergence of
new viral variants dangerous for humans with epidemic
potential [58]. According to several researchers, the use
of such organoids helps to provide a biosystem to con-
firm the zoonotic potential of newly emerging viruses,
to effectively study the infection cycle of these viruses
in different species of domestic and wild animals and
the ability of viruses to cross-species transitions, in-
cluding adaptation to the human body. Furthermore, the
use of cross-species organoids allows the cultivation of
new viruses that cannot be grown in cell lines [57, 58].

Y. Sang et al. analyzed the status and potential of
cross-species organoid cultures and noted the necessity
for their development to study cross-species suscepti-
bility and investigate newly emerging zoonotic viruses
in both domestic and wild animals. The authors also
noted the necessity to adapt the technology of human
organoid production for the development of animal or-
ganoids, and in the 1st place, based on respiratory or-
gans [58].

Despite intensive research due to the spread of
the COVID-19 pathogen and other zoonotic respiratory
viruses, there have been no reports of animal respira-
tory or pulmonary organoids until this year, since the
respiratory tract is one of the main routes for viral in-
fection. It was not until 2025 that the development of
lung organoids from bats of the Rousettus leschenaultia
species was reported. These organoids successfully
mimic the structure and morphology of the pulmonary
epithelium and express human-like coronavirus entry
receptors — ACE2 receptors (angiotensin-converting
enzyme 2) and TMPRSS2 (transmembrane protease
serine group 2). This model is very much in demand
and represents a great opportunity to study infections
originating from bats [59].

According to several researchers, integrating
organoid cultures into epidemiological forecasting
contributes to addressing questions regarding virus
cross-species transmission, especially after substantial
optimization of human organoid systems [24, 60, 61].
As an example of an optimized system, D. Holthaus et
al. imply a harmonized cross-species organoid culture
system for animal infectious disease modeling [62]. To
this end, intestinal organoids derived from stem cells of
four species (human, mouse, pig and chicken), which
are important hosts of Apicomplexa toxoplasma and
other protozoa as agents of zoonotic infections, were
developed using the Transwell platform [62]. In this as-
pect, the study devoted to the cross-species analysis of
the transcriptome of cells of the ileum epithelium of the
mouse, bat, pig, macaque and human is also of interest,
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providing information on the cellular composition of
these organs and their functional purpose in 4 mamma-
lian and human species. The results also showed that
bats and humans have similar gene expression patterns,
which is important for studying drug metabolism. In all
likelihood, these data are also important for the design
of cross-species organoids [63].

The lack of animal models is due to individual an-
imal diversity and other problems (especially in cap-
turing and surveying wildlife). In this aspect, organoid
systems represent an excellent substitute for studying
cross-species and species-specific infectivity of viruses.
The maintenance and differentiation of organoids from
different domestic and wild animal species requires
species-specific optimization of culturing conditions.
For example, the generation of mouse intestinal organ-
oids requires conditioned media containing appropri-
ate stem cell growth and differentiation factors, which
do not yet exist for most animal species [64—66]. The
problem of the difficulty of experimentally confirming
susceptibility to coronavirus in most animal species, es-
pecially wild animals, has been highlighted by other re-
searchers. They also believe that substantial optimiza-
tion of human organoids will help in solving the issues
of epidemiological prediction [24, 44, 60].

After obtaining a certain organoid culture of ani-
mals, it is necessary to characterize it authentically, e.g.
for cell heterogeneity and lineage differentiation (gene
expression), etc., in order to achieve this. Various cell
markers are required for this purpose. Such markers ex-
ist for humans and mice, but are very limited in most
animal species [61, 67].

Despite this, research related to animal organoids
has intensified in the last 10 years [59, 66, 68—70].

Animal farms where several different animal spe-
cies are kept, especially when wild animals may be in
the environment, are a possible site for the emergence
of new virus strains and their transmission to humans.
Farm animal organoids play an important role in the
study of zoonotic and reproductive diseases, not only
for the improvement of agricultural production but al-
so for public health. Intestinal organoids derived from
crypts or pluripotent stem cells can serve as models for
investigating the mechanisms of intercellular or patho-
gen-host interactions in zoonotic infections of the gas-
trointestinal tract, in which animals can serve as asymp-
tomatic carriers of the disease [69, 70].

Intestinal organoids of the main species of farm
animals: domestic pig (Sus scrofa) [71, 72], cattle (Bos
taurus) [68, 73], sheep (Ovis aries) [74] and other ani-
mals have been used for successful modeling of various
viral infections in animals and studying pathogen-host
interaction in the intestine.

Organoids of the large and small intestine of mar-
mosets (model nonhuman primates susceptible to gas-
trointestinal diseases) capable of passivation and long-
term cultivation were obtained [75].

Organoid models reproducing various organs of
domestic carnivores: cats (Felis catus) [76, 77], dogs
(Canis lupus) [76-78] have also been obtained, since
it cannot be excluded that domestic animals can be in-
termediate hosts in the transmission of viral infections
[28, 68]. Various animal species, including domestic
animals (cats, dogs, hamsters) and wild animals (lions,
tigers), have been found to be infected with SARS-CoV-2
[79-81]. A large number of works are devoted to the use
of animal organoids to study the pathogenesis of corona-
virus infection. For example, infection of enteroids ob-
tained from different segments of pig intestines with two
types of coronavirus (Porcine epidemic diarrhea virus
and Transmissible gastroenteritis suum virus) revealed
the tropism of coronavirus to certain cells [71, 72]. In-
testinal organoids (enteroids) of Chinese horseshoe bat
(Rhinolophus sinicus) that reproduce intestinal epitheli-
um and are susceptible to SARS-CoV-2 infection were
obtained, in contrast to unsuccessful attempts using cell
cultures [45]. Based on the results of in silico model-
ing of the molecular structure of the ACE2 receptor, the
Malayan pangolin (Manis javanica) was the main can-
didate for the role of an intermediate host [82]. As not-
ed above, organoids of bat lungs whose cells expressed
ACE2 and TMPRSS2 entry receptors for coronavirus
have been registered [59].

Although most studies with farm animal organoids
are aimed at modeling infections, most authors agree
that this cell technology holds great promise for appli-
cations in veterinary medicine, agriculture, biomedical
sciences, and for assessing and predicting the ability of
viruses to overcome the cross-species barrier.

Conclusion

In the practice of epidemiological surveillance of
viral infections, in addition to modern molecular genet-
ic technologies (PCR and sequencing), which are the
main tools of epidemiological studies, the use of organ-
oid (3D-cell) cultures is very relevant and promising.

The review analyzes numerous examples of the
use of organoid (3D-cell) cultures of human and animal
origin in modeling and studying the pathogenesis of
infections caused by influenza, Zika, measles and oth-
er viruses. Special attention is given to the analysis of
studies using such cultures in deciphering the pandemic
of a new coronavirus infection, which made it possi-
ble to reveal the source and causes of its rapid spread
around the world. The development of cross-species or-
ganoid cultures based on human and animal cells (wild
and domestic) is of considerable interest in the study
of the ability of viruses to overcome the cross-spe-
cies barrier and adapt to the human body. Such infor-
mation is necessary to build strategies to prevent and
control cross-species transmission and to develop sci-
ence-based interventions to prevent outbreaks. Despite
intensive research, there are a number of limitations and
challenges to cross-species organoid cultures. These in-
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clude several design features, issues of increasing their
reproducibility, species-specific optimization and stan-
dardization of culturing protocols. The question of the
possibility to construct organoids by fusion of human
and animal cells remains open.

Thus, organoid (3D-cell cultures) of human and
animal origin represent an effective model for studying
the pathogenesis of viral infections, virus-host inter-
actions, and for solving issues related to cross-species

ORIGINAL RESEARCHES

transmission of viruses, hence, for realizing the goals
and objectives of epidemiological surveillance of viral
infections.

Being widely implemented in virology and micro-
biology laboratories, these models will contribute to the
development of science-based prediction of pathogen
introduction from wild and farm animals into the hu-
man population, preventive measures, effective chemo-
prevention and treatment strategies for patients.
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