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Abstract
Introduction. The key step in agent-based modeling of epidemics, which allows researchers to take into account 
individual characteristics of people, is the creation of an artificial population. The main difficulty of this procedure 
is finding a balance between the detail of the population description and the computational efficiency of the 
calculations.
The aim and objectives of the review: Critically analyze and summarize the current evidence on how to create 
artificial populations; evaluate the limitations and advantages of available approaches in solving various problems 
in epidemiology.
Materials and methods. An analysis of literature sources devoted to agent-based modeling has been performed. 
The analysis is focused on algorithms for creating an artificial population with a given level of detail for modeling 
human respiratory infections.
Results. The approaches to the creation of artificial populations are generalized. The main principles of realization 
of interaction between agents are revealed: by means of networks of contacts between agents and on the basis 
of taking into account the movement of agents between locations. The first approach is the most computationally 
efficient and simple; the second approach allows to better take into account the change in the behavior of agents 
during the development of the epidemic process. 
Conclusion. Agent-based modeling is an optimal tool for selecting the best scenario for epidemic control and 
investigating the role of individual characteristics of people in the development of epidemics. When creating an 
artificial population, it is important to include in the model factors that can be targeted for control. A significant 
limitation is the lack of factual data on population structure, but this can be overcome by using indirect data.
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Аннотация
Введение. Ключевым этапом агентного моделирования эпидемий, позволяющим исследователям учи-
тывать индивидуальные особенности людей, является создание искусственной популяции. Основная 
сложность этой процедуры — поиск баланса между подробностью описания популяции и вычислительной 
эффективностью расчётов.
Цели и задачи обзора: критически проанализировать и обобщить актуальные данные о способах созда-
ния искусственных популяций; оценить ограничения и преимущества имеющихся подходов при решении 
различных задач в эпидемиологии.
Материалы и методы. Проведён анализ источников литературы, посвящённых агентному моделирова-
нию. Анализ сфокусирован на алгоритмах создания искусственной популяции с заданным уровнем дета-
лизации для моделирования респираторных инфекций человека.
Результаты. Обобщены подходы к созданию искусственных популяций. Выявлены основные принципы 
реализации взаимодействия между агентами: с помощью сетей контактов между агентами и на основе 
учёта перемещения агентов между локациями. Первый подход является наиболее эффективным для вы-
числений и простым; второй подход позволяет лучше учитывать изменение поведения агентов в ходе 
развития эпидемического процесса. 
Заключение. Агентное моделирование — оптимальный инструмент при выборе наилучшего сценария 
проведения противоэпидемических мероприятий и исследовании роли индивидуальных особенностей 
людей в развитии эпидемий. При создании искусственной популяции важно включать в модель факторы, 
на которые может быть направлен контроль. Существенным ограничением является отсутствие факто-
логических данных о структуре популяции, однако его можно преодолеть за счёт привлечения косвенных 
данных.

Ключевые слова: агентное моделирование, искусственная популяция, эпидемический процесс, вычис-
лительная эпидемиология, систематический обзор
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Introduction
Since the early 2000s, humanity has faced a num-

ber of viral epidemics, including Severe Acute Re-
spiratory Syndrome (SARS, 2002-2003), Influenza 
A(H1N1)-California (swine flu) (2009), Middle East 
Respiratory Syndrome (MERS, 2012), Ebola outbreaks 
(2014-2016), Zika fever (2015-2016) and finally the 
COVID-19 pandemic caused by the novel SARS-
CoV-2 coronavirus (2019-present). The COVID-19 
pandemic has sparked the interest of epidemiology and 
public health professionals in using computational tools 
to predict epidemics and select optimal anti-epidemic 
measures. These tools include machine learning meth-
ods and computational epidemiologic models.

Computer simulations in epidemiology are de-
signed to reproduce the dynamics of infectious disease 
spread, taking into account population demographics 
[1–3], contact network structure [4] and information on 
intervention strategies [5, 6]. These models provide a 
virtual laboratory to study hypothetical scenarios, eval-
uate the effectiveness of different interventions, and an-
ticipate outbreak trajectories.

Numerical solution of ordinary differential equa-
tions and agent-based modeling (ABM) are the two 
most common modeling approaches in epidemiology 
[7, 8]. The first approach includes various compartmen-
tal models, such as the susceptible-infected-uninfected 
model [9] and its modifications; the second approach 
includes agent-based models, which take into account 

the heterogeneity of a population by modeling the ac-
tions and interactions of individual agents (people) 
within it [3, 4, 10].

Agent-based models consider each person as an 
autonomous agent with characteristics that determine 
his/her behavior and social interactions. The semantic 
blocks into which any synthetic population can be di-
vided are presented in Fig. 1.

The agent-based approach is applicable for study-
ing epidemic control measures [11–13], assessing the 
effectiveness of interventions on different populations 
[14], and conducting sensitivity analysis of modeling 
results to changes in parameter values [15]. The main 
goals of public health applications of ABM are to an-
alyze and predict the public health consequences of 
proposed interventions, taking into account aspects of 
complex social structure. ABM-based models help to 
understand the underlying mechanisms that determine 
the dynamics and outcomes of epidemics. ABMs can 
be used for virtual experiments exploring different in-
tervention strategies and other interventions to reduce 
morbidity in the population [16]. All this makes ABMs 
an important research and training tool for public health 
professionals.

The main difficulty in using ABM as a tool for so-
cial, political, and economic research lies in the proper 
matching of the purpose of modeling and the level of 
detail of the model [17]. The disadvantage of ABM can 
be excessive detail, which complicates the overall mod-

Fig. 1. The artificial population consists of agents with different demographic characteristics (block A). These agents are 
assigned specific tasks to perform at specific locations and times. This determines a network that connects agents to 

locations throughout the day, creating a person-location network (Block С). The person-to-person contact network (Block B) is 
developed based on the interactions obtained from the person-to-location graph.

Block А.
Agent initialization
Characteristics that are 
assigned to digital twins:
- age;
- immunization status;
- social status;
- and others

Block B.
Human to human interactions 
Contact between agents takes place within 
a specific location according to the daily 
routine of the selected agents. Time 
intervals must be taken into account.

Block C.
Human-location interactions 
A network is built for each agent between 
the locations they visit. It also keeps track 
of time intervals.

Morning, day

Day

Day, night

Morning, day

Day, night

Morning, day
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eling task and leads to the creation of overly complex 
models with redundant parameters that do not contrib-
ute significantly to the modeling results [18]. 

Finding a balance in the choice of considered pa-
rameters and complexity when creating an artificial 
population (AP) for ABM is an open question facing 
researchers. This systematic review aims to identify 
the most common approaches to creating AP in agent-
based modeling and to specify their limitations.

Materials and methods
This systematic review is based on the PRISMA 

(Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) guidelines. A systematic litera-
ture search was conducted using the PubMed data-
base. The search was performed using the keywords: 
"agent-based" AND "epidemiology". Full-text articles 
published between 2020 and 2024 were considered. 
The initial assessment selected studies that used agent-
based modeling, studied respiratory viral infections, 
and had a sufficiently detailed description of the model. 

Papers studying the behavior of the virus in a sin-
gle organism, as well as studies on modeling animal 
infections, were excluded from the study.

According to the search methodology, 144 stud-
ies published in international journals in English were 
selected and used for further analysis. No Russian-lan-
guage publications meeting the selection criteria were 
found. The selected publications were systematized ac-
cording to the ways of setting the AP by the criteria 
"location" (space consideration) and "agent properties". 
The agent's properties included such characteristics as 
gender, age, field of activity, ethnicity, income, and the 
like — i.e., characteristics determined on the basis of 
demographic and statistical data. We considered that 
the model accounted for locations if the probability of 
transmission depended on the agent's spatial location. 

This property of the model can be realized both by 
tracking the coordinates of each agent in the modeled 
space and by modeling individual spatial entities (e.g., 
store, school) that may house agents.

Results
In 2020-2024, the greatest interest of researchers 

was focused on modeling the spread of SARS-CoV-2 
virus, the causative agent of COVID-19, in the popu-
lation: 129 (89%) papers out of 144 selected modeled 
the spread of this virus, 10 (11%) papers modeled the 
spread of influenza virus. In several studies, researchers 
presented their models as suitable for studying several 
respiratory diseases (Table 1).

To systematize the types of APs used in the mod-
els, we analyzed the presence of agent properties and 
the consideration of their location. Fig. 3 shows the dis-
tribution of publications considered in the review ac-
cording to the type of APs described in them. 

We can distinguish 4 variants of AP construction, 
based on combinations of presence and absence of con-
sideration of agents' properties and consideration of lo-
cations.

Approaches to AP creation without consideration  
of location and agent properties (12 articles) 
An artificial population without taking into ac-

count spatial localization and demographic properties 
of agents represents a graph — a network of contact-
ing agents (Fig. 4). The stochasticity of such models is 
created by generating individual sets of connections at 
each node (agent) based on given probability distribu-
tions of the number of contacts. 

At the same time, contacts or social ties can be 
the same or differ in the strength and frequency of in-
teraction. In 6 (50%) out of 12 reviewed works all con-
tacts are the same. In another 5 (41.7%) papers contacts 
are divided into 3 categories: close, permanent (family, 
friends) and casual, not close (contacts on the street, 
work, school). In 1 (8.3%) article, the division of inter-
actions by types is more complex. 

For example, in a study conducted by J. Whitman 
et al., the interactions are divided into two levels: in-
tra-cohort (strong ties, high probability of transmission) 

Number of publications 
detected by database 

search  
(n = 460)

↓
Full-text articles 

assessed for inclusion  
in the analysis  

(n = 212)
→

Excluded  
full-text articles, 

with reasons given 
(n = 67)

↓
Studies included  
in the analysis  

(n = 144)

Fig. 2. Publication selection scheme for the systematic 
review.

Table 1. Distribution of the articles according to the pathogen

Pathogen
Publication 

amount

n %

SARS-CoV-2 129 89

Influenza 10 6,9

Measles 1 0,7

MERS-CoV 1 0,7

Unspecified respiratory diseases 4 2,7
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and inter-cohort (weak ties, rare cases of virus trans-
mission, number of ties is smaller) [19]. This allowed 
us to account for the presence of clusters in the distribu-
tion of contacts and to reproduce the repetitive behavior 
of peaks in disease spread with significant stochasticity. 
Using this model, the researchers studied the behavior 
of the reproductive number at different values of the 
initial immune profile of the population, as well as the 
dynamics of the infection time series when the popula-
tion size and contact matrix change. 

A study by X. Guo et al. presented a multilevel 
model of the relationship between disease transmission 
and emotional stress in society [20]. In this paper, two 
independent networks of contacts are superimposed. 
Each node represents some group of people, infection 
and information exchange occurs through the edges of 
these nodes. Each node, in turn, models a set of indi-
viduals in each node, which increases the accuracy of 
the results. 

In the study conducted by N.N. Chung et al. pres-
ents a contact network consisting of a set of overlap-
ping networks (households, dormitories, workplaces, 

dynamic crowd network, dynamic social gathering net-
work) [21]. 

Agent-based modeling based on the construction 
of AP without taking into account the spatial local-
ization and demographic properties of agents makes 
it possible to solve a fairly wide range of problems 
without additional complication of the model. This ap-
proach was used to study the influence of such factors 
as population size, immunity parameters, the number 
and nature of agent relationships, and population densi-
ty on the modeling results. This approach also allows us 
to analyze quarantine and testing strategies, the nature 
of repeated peaks of incidence, the dynamics of mutant 
infections, and the role of super-spreaders (agents with 
a large number of linkages). 

The lack of detailing the properties of agents when 
creating the AP allows us to simplify the computation-
al model and increase its interpretability. At the same 
time, the main limitations of the AP considered in this 
section are the lack of the possibility of introducing 
adjustable clustering (for example, separating pension-
ers into a separate group) and taking into account the 
behavior of the population, as well as the inappropri-
ateness of such models to study the physical impact of 
social interactions. 

Approaches to creating an AP that takes into account 
properties of agents without considering locations  

(64 studies)
APs in which agents with demographic, biological, 

and social properties interact with each other in an un-
structured space are the most common in agent-based 
modeling. Many authors consider this type of AP to be 
optimal from the point of view of accuracy/performance 
balance. This approach is also popular due to the fact 
that high computational efficiency allows the agents to 
be endowed with an extensive set of parameters. 

Fig. 3. Distribution of publications by artificial population type. 
*Аt the same time, agents can be endowed with an individual level of protection against the pathogen (immunity) and the level of viral load. 

**Тhis group also includes papers that consider the spatial location of buildings and/or agents.

Fig. 4. A network of contacts without considering the 
properties of agents and spatial characteristics is illustrated. 

Each node represents an agent, and the edges between nodes 
indicate a contact on one of the layers.

accounting for agent properties without 
taking locations into account

[22–34, 49, 50–52, 56,  
57, 59, 72–115]

accounting for locations and agent 
properties

[40–48, 53–55,  
60, 61, 124–165]

without considering locations  
or agent properties* 
[19–21, 58, 64–71]

accounting for location** without 
considering agent properties 

[35–38, 116–123]

56

12
12

64
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The construction of a network of contacts in the 
considered type of AP is often based on the creation of 
4 main layers: households, work, schools and kinder-
gartens, and society. In more complex models, up to 30 
layers can be overlaid.

The considered agent-based models based on the 
formation of AP, taking into account the properties of 
agents without taking into account locations, according 
to the nature of the realization of social ties were dis-
tributed as follows:

• Uniform contact— 11 (17.2%) publications;
• Close/long distance contact — 1 (1.5%);
• Three or more types of contact — 52 (81.3%).
The most common agent characteristics include 

age (64/64) and sex (9/64). Age groups may differ in 
the likelihood of infection and the development of more 
severe cases of disease. The age structure of the pop-
ulation also affects the properties of contact networks 
between agents. For example, in models with homo-
geneous contacts, the network of interactions is built 
based on age-specific contact matrices [22, 23]. Work 
contacts may be excluded for the older generation, and 
some models construct additional blocks of contact net-
works for elderly care facilities [24-30].

The number and nature of contacts between agents 
may depend on the agent's occupation/profession. In 
the simplest case, professions such as teacher and hos-
pital employee are modeled. Such an approach allows 
modeling elements of temporal dynamics of agents' 
interaction, e.g., five-day working day, possibility of 
vacation and skipping school/work, division of con-
tact networks into daytime (school, work) and evening/
nighttime (home, community) ones.

About 20% of the publications reviewed in this 
section use the Covasim environment for AP construc-
tion and modeling [10]. In its basic version, Covasim 
is an open-source modeling environment adapted to 

study the dynamics of the COVID-19 pandemic. The 
AP embedded in Covasim represents a set of people, 
each with attributes such as age, gender, and social 
status (Figure 5). In modeling the spread of infection, 
the model takes into account the frequency of con-
tacts, the infectiousness of the virus, and the suscepti-
bility of agents.

Using the open source agent-based modeling en-
vironment Covasim, researchers can explore different 
epidemic scenarios by changing infection parameters 
and modeling various interventions such as social dis-
tancing, isolation, testing, contact tracing, and vaccina-
tion campaigns. In a study conducted by A. Cattaneo 
et al., the Covasim environment was used to evaluate 
the effectiveness and optimization of a COVID-19 vac-
cination campaign in the Italian region of Lombardy 
[31]. The age structure of the population and the house-
hold characteristics were matched with data from the 
Italian National Institute of Statistics, while the rest of 
the contact network variables were constructed based 
on the default parameters embedded in Covasim. Dif-
ferent levels of constraints were modeled by reducing 
the number of contacts in the school, work and social 
interaction strata, and by varying the probability of 
transmission between household members. The Cova-
sim environment also allows for the specification and 
tracking of dynamic characteristics of agent immuni-
ty. For example, vaccination, as well as disease, affects 
the dynamics of neutralizing antibodies and the level of 
protection of agents; cross-immunity with a given de-
gree of effectiveness is realized when different strains 
of the virus are present in the population. In the study 
of A. Cattaneo et al., the Covasim model showed results 
consistent with the registered cases of COVID-19 in-
fection, detection and mortality, the most effective vac-
cination strategy was determined and age priorities for 
vaccination were proposed [31].

Fig. 5. Inter-agent interactions under the assumption that agents do have properties. Constant (solid lines) and dynamic 
(dashed lines) contact networks are modelled.

Male, 17 years old, 
student

Female, 18 years old,  
student

Female, 8 years old, 
school student

Female, 48 years old, 
nurse

Male, 75 years old, 
retired

Male, 30 years old, 
unemployed

Female, 29 years old, 
teacher
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In general, agent-based modeling on AP, which 
takes into account the properties of agents without tak-
ing into account their locations, is used to study the 
development of an epidemic taking into account vari-
ous demographic data, as well as to assess the effects 
of diseases on public health and the economy. In par-
ticular, such modeling makes it possible to assess the 
effectiveness of quarantine measures, analyze vaccina-
tion scenarios (including those targeting different age 
groups of the population), calculate the economic cost 
of introducing restrictive measures, and build popula-
tion immunity. 

One of the main limitations of this type of AP is 
the simplified representation of the network of contacts 
[32], as well as the idealization of individuals' activi-
ties during the day [33]. The authors also emphasize the 
potential importance of additional properties of agents, 
which are not taken into account in this approach to 
modeling [24, 34]. 

Approaches to agent location-aware and agent 
property-aware AP (12 studies)

The main purpose of AP modeling with and with-
out taking into account the spatial movements of agents 
is to reflect both the mobility of agents and the spatial 
dynamics of their movements during the spread of an 
epidemic. 

The most common tool for this approach is the 
NetLogo software. In this environment, a map of a 
closed space is represented either by a coordinate grid 
or by a set of cells, and agents move randomly across 
the map or according to specified movement patterns 
(Fig. 6) [35-37]. Infection in this type of representation 
is possible if the agents (infected and susceptible) col-
lide, converge to some threshold distance, or fall into 
one cell.

In the agent-based models we have considered, 
based on the formation of AP with and without taking 
into account the location of agents, social ties were an-
alyzed as follows:

• Uniform contact — 6 (50%) publications;
• Close/long distance contact — 4 (34%);
• Three or more types of contact — 2 (16%).
A good example of this approach is shown in the 

study by T. Daghriri et al., in which several ways of 
distancing were modeled and the movements of agents 
resulting from different scenarios were visually repre-
sented [35]. The model took into account the possibility 
of a part of the agents not respecting the distancing. The 
authors showed the importance of compliance with re-
strictive measures and depicted the correlation between 
the strictness of the social distancing policy and the 
spread of the disease. 

The two main models describing the movement of 
agents in the environment are random walks and the 
gravity model, according to which the strength of inter-
action (intensity of flows) depends on the importance 

(magnitude) of objects and the distance between them. 
For example, the study conducted by N. Kishore et al. 
showed that a densely populated center has a higher 
probability of being visited by agents [38]. 

The main goals of research in this approach are 
to study distancing strategies, the effectiveness of re-
strictive quarantine measures, the role of geographi-
cal factors in the spread of disease, and the role of su-
per-spreaders. Such modeling also allows direct track-
ing of contacts of individuals in a population. However, 
it is not possible to model the implementation of an-
ti-epidemic measures in different age and social groups 
of the population. 

Approaches to creating an AP that takes into account 
the location and properties of the agents (56 studies) 

When modeling with both geographic and de-
mographic data, researchers try to achieve the closest 
approximation to the real population, with the goal of 
creating a digital twin. Typically, contact networks are 
divided into households, schools, workspace, and com-
munity, and geographic features are taken into account 
in two ways: modeling agents' movements on a map 
or capturing the location of buildings and determining 
the probability of agents visiting them. However, if in 
the group of APs that take into account the location 
of agents without taking into account their properties, 
the more common was the mapping of terrain, then in 
the works that take into account both the properties 
of agents and the properties of places, the division of 
the model space into conditional locations in which an 
agent can be located was more often used in the cre-
ation of APs (Fig. 7). 

The most common framework for this type of 
model is FRED (a Framework for Reconstructing Epi-
demic Dynamics) [39]. FRED uses synthetic popula-
tions based on census data that reflect the demographic 
and geographic heterogeneity of the population. Each 
agent has associated demographic and socioeconomic 
information (e.g., age, gender, race, family income). 
Race, along with sex and age, can be used to account 

Fig. 6. Representation of an artificial population accounting 
for the movement of identical agents. 

A contact is defined as a collision, approaching a critical distance, 
and/or agents entering the same cell.
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for known disease prevalence. Households, educational 
and health institutions, places of work, and some other 
locations are georeferenced to a spatial grid of coordi-
nates (at 1 km resolution). When calculating the prob-
ability of visiting different geographic locations, the 
agent's household income is taken into account. One 
of the features of this model is the ability to take into 
account the dynamic demography of agents, includ-
ing aging, fertility and mortality. Works [40-43] have 
been performed on the basis of this model. Currently, 
FRED continues to be actively used to study seasonal 
influenza. 

M.G. Krauland et al. studied the effect of a de-
crease in population immunity caused by the restriction 
of virus activity on its dynamics in subsequent years 
[43]. Modeling was conducted for a population repre-
senting Allegheny County (Pennsylvania, USA) with a 
population of about 1.2 million. This county includes 
both urban and suburban areas and is large enough to 
investigate influenza patterns. According to the results, 
a decrease in the incidence rate in the first season will 
lead to an increase in the incidence rate in the second 
season. Compensating for the decline in population 
immunity may help to increase vaccination. Depend-
ing on cross-immunity from previous infection and the 
transmissibility of the strain, the incidence rate could 
increase by up to 50%.

Many of the publications reviewed in this section 
describe complicated models where additional param-
eters have been added to the basic version of the AP. 
In particular, A. Truszkowska et al. modified the ba-
sic version of the model by adding the division of the 
able-bodied population into spheres of activity [44]. 
This allowed the model to reflect the complex struc-
ture of employment. And in the study conducted by C. 
Fosco et al., the labor force was divided into 4 groups 
according to different mobility in case of quarantine 
measures [45].

A number of works paid more attention to the di-
vision of the day into time segments. In 24 models, the 
temporal characteristics of agents' mobility were taken 
into account (taking into account the schedule, division 
of the day). 

The goals of approaches that take into account 
both agent and location properties include: 

• management decision analysis;
• finding the optimal approach to implementing 

non-pharmaceutical interventions;
• study of infection spread using GPS;
• studying the spread of the pathogen in its early 

stages;
• studying the distribution of different strains;
• modeling contact tracing and virus transmission;
• studying the spread of the virus in different 

countries/cities;
• exploring vaccination strategies;
• studying the protection of the population 

depending on the past season.
In generating this type of AP, model developers 

often resort to various simplifications to allow for the 
inclusion of additional characteristics that they consid-
er crucial [46]. Some assumptions exceed the current 
understanding of the mechanisms of epidemic develop-
ment, allowing them to be included in the study only in 
an approximate form [47]. It is common practice to use 
updated real-world data as the basis for the creation of 
an AP-digital twin, which is then projected onto a sam-
ple of smaller size than the general population. Even if 
the sample replicates the structure of the real popula-
tion, the results obtained for it may not fully reflect the 
situation in the real population [48]. 

Increasing complexity of AP formation
When creating a realistic population for epidemio-

logic studies, an extensive set of parameters is required, 
each of which cannot be taken into account at the mo-
ment. Basic versions of models allow describing the ep-
idemiologic process in a general way and investigating 
regularities and trends in the dynamics of epidemics. 

In order to make it more plausible, some authors 
have resorted to complicating the AP by introducing the 
following parameters:

• seasonality;
• comorbidities;
• dynamic immunity;
• ethnicity;
• profits;
• transport flows.
The heterogeneity of the population in terms of 

the susceptibility of individuals to the virus and the se-
verity of the disease can be accounted for by a co-mor-
bidity factor. In the simplest version, co-morbidities 
can be taken into account thanks to the binary parame-
ter (present or absent) [28]. In a more complex version, 
by introducing an additional module for calculating the 
risk factor, it is possible to take into account both spe-
cific diseases (type 1 and type 2 diabetes, hypertension, 
cardiovascular diseases, etc.) and risk factors related 
to lifestyle (smoking, physical activity, increased body 
mass index, etc.) [49].

In certain studies, dynamic immunity modeling 
has been performed. A popular framework for account-

Fig. 7. Artificial population taking into account the location 
and characteristics of agents. 

It is possible to overlay a network of contacts on a map  
or to simulate the movements and contacts of agents.

2 meters

Female, 25 years old,  
student

Male, 14 years old,  
school student
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ing for immunity has been the Covasim model [50–52], 
which provides the possibility of dynamically changing 
the values of the level of specific immune defense for 
each agent and the population as a whole. 

Seasonality can affect both the properties of the 
pathogen (mainly used in modeling seasonal influenza) 
and other parameters (effect of average daily tempera-
ture on susceptibility, effect of season on the contact 
network with sex distribution, etc.). [43, 53–58].

If appropriate data are available, it is possible to 
add sociological parameters of agents — income level 
and ethnicity, and these characteristics can be reflected 
in the model in different ways. In the study conduct-
ed by M.D. Patel et al., people of different nationalities 
had different susceptibility to the virus and tolerated 
the disease differently [59]. In the study conducted by 
C. Fosco et al., income level influenced the ability of 
workers to stay at home during the epidemic [45]. In 
the study conducted by M. Thakur et al. income was di-
rectly correlated with decreased vaccination rates [60].

Modeling of transport flows within the AP was 
used in 15 (10%) papers, 8 of which considered geo-
graphic and demographic population data, 7 — only 
demographic data. 

Representation of transport was possible in the 
form of:

• an additional random network of contacts;
• more transportation stops/blocks;
• addition of common agent routing.
• Some researchers have resorted to dividing 

transportation into modes:
• automobiles, hitchhiking, public transport, 

walking, etc. (with the possibility of getting 
infected only in automobiles and public 
transportation) [25]; 

• metro, bus, shuttle bus [61].

Conclusion
AP formation is a key point in the construction of 

predictive agent-based models. The use of ABM allows 
us to consider the population at the level of individu-
al representatives, which opens new opportunities for 
studying the development of epidemics and analyzing 
measures to prevent the spread of infection. 

In our review, based on the analysis of 144 origi-
nal studies, we consider 4 variants of AP construction 
with different degrees of detail. We intentionally used 
the PubMed database exclusively for the literature 
search because it is focused on biomedical research, 
including epidemiology. This choice allowed us to 
analyze the main publications published in ranked 
peer-reviewed journals in the field of interest, but it 
is possible that some part of the available publications 
was not considered. The review also considered arti-
cles published since the beginning of the COVID-19 

pandemic. This allowed us to analyze the most rele-
vant cross-section of papers, focusing on the demand-
ed solutions in AP formation, while the review did not 
include the previously published EpiSimS [62] and 
TRANSIMS models [63]. 

It should be noted that all the considered variants 
of AP construction turned out to be suitable for solving 
the list of tasks in the field of infectious disease epide-
miology stated by the developers. The limitations of the 
present study are dictated by the impossibility of exper-
imental confirmation of the success of the implemen-
tation of the presented ABM to achieve the goals and 
objectives in the reviewed studies. In most cases, there 
is no possibility to critically conceptualize the model 
due to the availability of a general, often superficial de-
scription of its device given in the publication and the 
lack of access to the source code of the model. The se-
lected literature was analyzed largely on the basis of the 
authors' evaluation of the results of the papers. In most 
cases, the authors do not provide an analysis of the sen-
sitivity of the result to the parameters of the modeled 
pathogen and AP. Such analysis is an important feature 
of complex models and can show the real importance of 
parameters, and this review revealed a systematic short-
coming of a large part of the analyzed papers.

Among the identified limitations in AP creation, 
the most significant are the insufficiency and anachro-
nism of real demographic and statistical data required 
for further accounting in the model. Works that take into 
account the properties of agents in the AP, as a rule, rely 
on census data or sociological surveys, which do not al-
ways have the required detail. Models that incorporate 
the movement of agents on a city map use information 
from specialized applications, databases and mapping 
services such as Google Maps and OpenStreetMap. 
Obtaining this data and incorporating it into the model 
can be challenging, so simplified models based on as-
sumptions about agent behavior and interactions were 
used in some cases. 

The use of complex and diverse real demogra-
phic and statistical data is possible when studying small 
groups (at the level of a room, building), but for larger 
studies, the computational complexity in case of in-
creasing the number of parameters or population size 
may exceed the technical capabilities of the calculation 
and lead to unreliable or uninterpretable results. 

Further research on the creation and use of AP 
in agent-based modeling can be focused on optimiz-
ing methods of model parameterization and finding a 
balance between model detail and interpretability to 
achieve maximum accuracy and precision of results. 
When creating a AP, it is important to consider the fac-
tors that can be targeted for control. This will improve 
the quality of public health decision-making and in-
crease the effectiveness of epidemic response. 
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